期刊论文详细信息
BMC Microbiology
OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli Biofilm
Birgit M Prüß1  Shelley M Horne1  Katie Knutson1  Emily R Clark1  Priyankar Samanta1 
[1] Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
关键词: Fluorescence microscopy;    Reporter gene fusion;    Biofilm;    Escherichia coli;   
Others  :  1143280
DOI  :  10.1186/1471-2180-13-182
 received in 2013-04-11, accepted in 2013-07-31,  发布年份 2013
PDF
【 摘 要 】

Background

Biofilms are communities of bacteria that are characterized by specific phenotypes, including an increased resistance towards anti-microbials and the host immune system. This calls for the development of novel biofilm prevention and treatment options to combat infectious disease. In Escherichia coli, numerous global regulators have been implicated in the control of biofilm associated cell surface organelles. These include the flagellar regulator FlhD/FlhC, the osmoregulator EnvZ/OmpR, and the colanic acid activator RcsCDB. Using flow cell technology and fluorescence microscopy, we determined the temporal expression from flhD::gfp, ompR::gfp, and rcsB::gfp in E. coli biofilm, as well as the impact of the negative regulation of flhD by OmpR and RcsB. Spatial gene expression was investigated from flhD::gfp.

Results

The temporal gene expression profile for flhD yielded an early peak at 12 h, a minimum of expression at 35 h, and a second increase in expression towards 51 h of biofilm development. In contrast, the ompR profile showed a peak at 35 h. A mutation in ompR abolished time dependence of flhD expression after the initial growth period of 12 h. Intriguingly, rcsB expression did not correlate inversely with flhD expression, yet a mutation in rcsB abolished time dependence of flhD expression as well. Spatially, expression of flhD was highest in the outermost layer of the biofilm in the parent strain. In ompR and rcsB mutants, flhD was expressed throughout the biofilm. Mutations in both, ompR and rcsB increased flhD expression throughout all temporal and spatial experiments. This increase was paralleled by reductions in biofilm amounts at four tested time points.

Conclusion

Our data lead to the conclusion that FlhD/FlhC and its regulation by OmpR and RcsB may be our first target mechanism for the development of novel biofilm prevention and treatment techniques.

【 授权许可】

   
2013 Samanta et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329032302128.pdf 1591KB PDF download
Figure 5. 31KB Image download
Figure 4. 81KB Image download
Figure 3. 86KB Image download
Figure 2. 95KB Image download
Figure 1. 193KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Goller CC, Seed PC: Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection: contribution to intracellular biofilm development. Virulence 2010, 1:333-337.
  • [2]Saint S, Chenoweth CE: Biofilms and catheter-associated urinary tract infections. Infect Dis Clin North Am 2003, 17:411-432.
  • [3]Schaudinn C, Gorur A, Keller D, Sedghizadeh PP, Costerton JW: Periodontitis: an archetypical biofilm disease. J Am Dent Assoc 2009, 140:978-986.
  • [4]Hoa M, Tomovic S, Nistico L, Hall-Stoodley L, Stoodley P, Sachdeva L, Berk R, Coticchia JM: Identification of adenoid biofilms with middle ear pathogens in otitis-prone children utilizing SEM and FISH. Int J Pediatr Otorhinolaryngol 2009, 73:1242-1248.
  • [5]Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Hoiby N: Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 2009, 44:547-558.
  • [6]Domka J, Lee J, Bansal T, Wood TK: Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 2007, 9:332-346.
  • [7]Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T: Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003, 48:1511-1524.
  • [8]Pamp SJ, Sternberg C, Tolker-Nielsen T: Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 2009, 75:90-103.
  • [9]Villena GK, Fujikawa T, Tsuyumu S, Gutierrez-Correa M: Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresour Technol 2010, 101:1920-1926.
  • [10]McLoon AL, Kolodkin-Gal I, Rubinstein SM, Kolter R, Losick R: Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J Bacteriol 2011, 193:679-685.
  • [11]Franks AE, Glaven RH, Lovley DR: Real-time spatial gene expression analysis within current-producing biofilms. ChemSusChem 2012, 5:1092-1098.
  • [12]Grantcharova N, Peters V, Monteiro C, Zakikhany K, Romling U: Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J Bacteriol 2010, 192:456-466.
  • [13]Garcia-Betancur JC, Yepes A, Schneider J, Lopez D: Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry. J Vis Exp 2012. Epub ahead of print
  • [14]Jakobsen TH, van GM, Christensen LD, Bjarnsholt T, Givskov M: Qualitative and quantitative determination of quorum sensing inhibition in vitro. Methods Mol Biol 2011, 692:253-263.
  • [15]Branda SS, Vik S, Friedman L, Kolter R: Biofilms: the matrix revisited. Trends Microbiol 2005, 13:20-26.
  • [16]Bartlett DH, Frantz BB, Matsumura P: Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol 1988, 170:1575-1581.
  • [17]Prüß BM, Markovic D, Matsumura P: The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J Bacteriol 1997, 179:3818-3821.
  • [18]Prüß BM, Liu X, Hendrickson W, Matsumura P: FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 2001, 197:91-97.
  • [19]Prüß BM, Campbell JW, Van Dyk TK, Zhu C, Kogan Y, Matsumura P: FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 2003, 185:534-543.
  • [20]Wang S, Fleming RT, Westbrook EM, Matsumura P, McKay DB: Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol 2006, 355:798-808.
  • [21]Mizuno T, Kato M, Jo YL, Mizushima S: Interaction of OmpR, a positive regulator, with the osmoregulated ompC and ompF genes of Escherichia coli. Studies with wild-type and mutant OmpR proteins. J Biol Chem 1988, 263:1008-1012.
  • [22]Gottesman S, Trisler P, Torres-Cabassa A: Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 1985, 162:1111-1119.
  • [23]Prüß BM, Besemann C, Denton A, Wolfe AJ: A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 2006, 188:3731-3739.
  • [24]Shin S, Park C: Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 1995, 177:4696-4702.
  • [25]Schwan WR, Shibata S, Aizawa SI, Wolfe AJ: The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli. J Bacteriol 2007, 189:7159-7163.
  • [26]Rentschler AE, Lovrich SD, Fitton R, Enos-Berlage J, Schwan WR: OmpR regulation of the uropathogenic Escherichia coli fimB gene in an acidic/high osmolality environment. Microbiology 2013, 159:316-327.
  • [27]Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T: Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 2003, 185:5735-5746.
  • [28]Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T: Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 2002, 46:281-291.
  • [29]Prüß BM: Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch Microbiol 1998, 170:141-146.
  • [30]Kim DJ, Boylan B, George N, Forst S: Inactivation of ompR promotes precocious swarming and flhDC expression in Xenorhabdus nematophila. J Bacteriol 2003, 185:5290-5294.
  • [31]Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002, 184:1140-1154.
  • [32]Guttenplan SB, Kearns DB: Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013. Epub ahead of print
  • [33]Ko M, Park C: Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 2000, 303:371-382.
  • [34]Kaiser M, Li H, Spangler C, Kasper CA, Kaever V, Sourjik V, Roth V, Jenal U: Second messenger-mediated adjustment of bacterial swimming velocity. Cell 2010, 141:107-116.
  • [35]Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C: CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 2005, 187:2038-2049.
  • [36]Gerstel U, Romling U: The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 2003, 154:659-667.
  • [37]Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S: Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 2005, 49:875-884.
  • [38]Ogasawara H, Yamamoto K, Ishihama A: Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 2011, 193:2587-2597.
  • [39]Danese PN, Pratt LA, Kolter R: Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000, 182:3593-3596.
  • [40]Stout V, Gottesman S: RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 1990, 172:659-669.
  • [41]Shi W, Zhou Y, Wild J, Adler J, Gross CA: DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 1992, 174:6256-6263.
  • [42]Prüß BM, Verma K, Samanta P, Sule P, Kumar S, Wu J, Horne SM, Christianson DA, Stafslien SJ, Wolfe AJ, et al.: Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation. Arch Microbiol 2010, 192:715-728.
  • [43]Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P: Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 1999, 181:7500-7508.
  • [44]Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G: LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 2002, 45:521-532.
  • [45]Lee C, Park C: Mutations upregulating the flhDC operon of Escherichia coli K-12. J Microbiol 2013, 51:140-144.
  • [46]Wang X, Wood TK: IS5 inserts upstream of the master motility operon flhDC in a quasi-Lamarckian way. ISME J 2011, 5:1517-1525.
  • [47]Barker CS, Prüß BM, Matsumura P: Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 2004, 186:7529-7537.
  • [48]Wei BL, Brun-Zinkernagel AM, Simecka JW, Prüß BM, Babitzke P, Romeo T: Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 2001, 40:245-256.
  • [49]Li B, Li N, Wang F, Guo L, Huang Y, Liu X, Wei T, Zhu D, Liu C, Pan H, et al.: Structural insight of a concentration-dependent mechanism by which YdiV inhibits Escherichia coli flagellum biogenesis and motility. Nucleic Acids Res 2012, 40:11073-11085.
  • [50]Francez-Charlot A, Laugel B, Van GA, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K: RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 2003, 49:823-832.
  • [51]Sperandio V, Torres AG, Kaper JB: Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 2002, 43:809-821.
  • [52]Hadjifrangiskou M, Hultgren SJ: What does it take to stick around? Molecular insights into biofilm formation by uropathogenic Escherichia coli. Virulence 2012, 3:231-233.
  • [53]Spurbeck RR, Tarrien RJ, Mobley HL: Enzymatically active and inactive phosphodiesterases and diguanylate cyclases are involved in regulation of motility or sessility in Escherichia coli CFT073. MBio 2012., 3
  • [54]Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, Hultgren SJ: Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob Agents Chemother 2012, 56:4738-4745.
  • [55]Mitra A, Palaniyandi S, Herren CD, Zhu X, Mukhopadhyay S: Pleiotropic roles of uvrY on biofilm formation, motility and virulence in uropathogenic Escherichia coli CFT073. PLoS One 2013, 8:e55492.
  • [56]Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ: QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 2009, 73:1020-1031.
  • [57]Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ: Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 2000, 182:4173-4179.
  • [58]Matsumura P: Remembering Malcolm J. Casadaban. J Bacteriol 2010, 192:4261-4263.
  • [59]Casadaban MJ, Cohen SN: Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 1980, 138:179-207.
  • [60]Fredericks CE, Shibata S, Aizawa SI, Reimann SA, Wolfe AJ: Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 2006, 61:734-747.
  • [61]Sule P, Wadhawan T, Carr NJ, Horne SM, Wolfe AJ, Prüß BM: A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants. Lett Appl Microbiol 2009, 49:299-304.
  • [62]Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 2006, 3:623-628.
  • [63]Fellay R, Frey J, Krisch H: Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 1987, 52:147-154.
  • [64]Cleveland W: Robust locally weighted regression and smoothing scatter plots. J Americ Statist Assoc 1979, 74:829-836.
  • [65]O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R: Genetic approaches to study of biofilms. Methods Enzymol 1999, 310:91-109.
  • [66]Pratt LA, Kolter R: Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998, 30:285-293.
  • [67]Stafslien S, Daniels J, Chisholm B, Christianson D: Combinatorial materials research applied to the development of new surface coatings III. Utilisation of a high-throughput multiwell plate screening method to rapidly assess bacterial biofilm retention on antifouling surfaces. Biofouling 2007, 23:37-44.
  • [68]Stafslien SJ, Bahr JA, Feser JM, Weisz JC, Chisholm BJ, Ready TE, Boudjouk P: Combinatorial materials research applied to the development of new surface coatings I: a multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces. J Comb Chem 2006, 8:156-162.
  文献评价指标  
  下载次数:14次 浏览次数:11次