期刊论文详细信息
BMC Medical Genomics
Batch correction of microarray data substantially improves the identification of genes differentially expressed in Rheumatoid Arthritis and Osteoarthritis
Raimund W Kinne5  Dirk Koczan2  Rene Huber1  Dirk Pohlers4  Reinhard Guthke3  Peter Kupfer3 
[1] Present address: Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany;Institute of Immunology, University of Rostock, Rostock, Germany;Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany;Present address: Center of diagnostics GmbH, Chemnitz Hospital, Chemnitz, Germany;Experimental Rheumatology Unit, Department of Orthopedics, University Hospital Jena, Friedrich Schiller University, Jena
关键词: Extracellular matrix;    Collagen;    Osteoarthritis;    Rheumatoid arthritis;    Batch correction;    Microarray analysis;   
Others  :  1134908
DOI  :  10.1186/1755-8794-5-23
 received in 2011-12-19, accepted in 2012-05-21,  发布年份 2012
PDF
【 摘 要 】

Background

Batch effects due to sample preparation or array variation (type, charge, and/or platform) may influence the results of microarray experiments and thus mask and/or confound true biological differences. Of the published approaches for batch correction, the algorithm “Combating Batch Effects When Combining Batches of Gene Expression Microarray Data” (ComBat) appears to be most suitable for small sample sizes and multiple batches.

Methods

Synovial fibroblasts (SFB; purity > 98%) were obtained from rheumatoid arthritis (RA) and osteoarthritis (OA) patients (n = 6 each) and stimulated with TNF-α or TGF-β1 for 0, 1, 2, 4, or 12 hours. Gene expression was analyzed using Affymetrix Human Genome U133 Plus 2.0 chips, an alternative chip definition file, and normalization by Robust Multi-Array Analysis (RMA). Data were batch-corrected for different acquiry dates using ComBat and the efficacy of the correction was validated using hierarchical clustering.

Results

In contrast to the hierarchical clustering dendrogram before batch correction, in which RA and OA patients clustered randomly, batch correction led to a clear separation of RA and OA. Strikingly, this applied not only to the 0 hour time point (i.e., before stimulation with TNF-α/TGF-β1), but also to all time points following stimulation except for the late 12 hour time point. Batch-corrected data then allowed the identification of differentially expressed genes discriminating between RA and OA. Batch correction only marginally modified the original data, as demonstrated by preservation of the main Gene Ontology (GO) categories of interest, and by minimally changed mean expression levels (maximal change 4.087%) or variances for all genes of interest. Eight genes from the GO category “extracellular matrix structural constituent” (5 different collagens, biglycan, and tubulointerstitial nephritis antigen-like 1) were differentially expressed between RA and OA (RA > OA), both constitutively at time point 0, and at all time points following stimulation with either TNF-α or TGF-β1.

Conclusion

Batch correction appears to be an extremely valuable tool to eliminate non-biological batch effects, and allows the identification of genes discriminating between different joint diseases. RA-SFB show an upregulated expression of extracellular matrix components, both constitutively following isolation from the synovial membrane and upon stimulation with disease-relevant cytokines or growth factors, suggesting an “imprinted” alteration of their phenotype.

【 授权许可】

   
2012 Kupfer et al.;

【 预 览 】
附件列表
Files Size Format View
20150306101818817.pdf 2098KB PDF download
Figure 5. 87KB Image download
Figure 4. 21KB Image download
Figure 3. 61KB Image download
Figure 2. 38KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, Shi T, Tong W, Shi L, Hong H, Zhao C, Elloumi F, Shi W, Thomas R, Lin S, Tillinghast G, Liu G, Zhou Y, Herman D, Li Y, Deng Y, Fang H, Bushel P, Woods M, Zhang J: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 2010, 10:278-291.
  • [2]Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, Liu C: Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 2011, 6:e17238.
  • [3]Scherer A: Batch Effects and Noise in Microarray Experiments: Sources and Solutions. 2009. [Wiley Series Probability Statistics]
  • [4]Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, Marron JS: Adjustment of systematic microarray data biases. Bioinformatics 2004, 20:105-114.
  • [5]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127.
  • [6]Kendziorski C, Newton M, Lan H, Gould M: On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 2003, 22:3899-3914.
  • [7]Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988, 31:315-324.
  • [8]Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M: Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 1986, 29:1039-1049.
  • [9]Zimmermann T, Kunisch E, Pfeiffer R, Hirth A, Stahl HD, Sack U, Laube A, Liesaus E, Roth A, Palombo-Kinne E, Emmrich F, Kinne RW: Isolation and characterization of rheumatoid arthritis synovial fibroblasts from primary culture–primary culture cells markedly differ from fourth-passage cells. Arthritis Res 2001, 3:72-76. BioMed Central Full Text
  • [10]Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/ webcite
  • [11]Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli GA, Bicciato S: Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinforma 2007, 8:446. BioMed Central Full Text
  • [12]Chen Y, Dougherty ER, Bittner ML: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J Biomed Opt 1997, 2:364-374.
  • [13]Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes Analysis of a Microarray Experiment. J Am Stat Assoc 2001, 96:1151-1160.
  • [14]Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW: On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 2001, 8:37-52.
  • [15]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 2001, 98:5116-5121.
  • [16]Smyth G: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004., 3ISSN (Online) 1544-6115 (Article 3), February 2004
  • [17]Lönnstedt I, Rimini R, Nilsson P: Empirical bayes microarray ANOVA and grouping cell lines by equal expression levels. Stat Appl Genet Mol Biol 2005., 4Article7. ISSN (Online) 1544-6115 (Article 7) April 2005
  • [18]Pan W: Incorporating biological information as a prior in an empirical bayes approach to analyzing microarray data. Stat Appl Genet Mol Biol 2005., 4: ISSN (Online) 1544-6115 (Article 12), May 2005
  • [19]Gottardo R, Raftery AE, Yeung KY, Bumgarner RE: Bayesian robust inference for differential gene expression in microarrays with multiple samples. Biometrics 2006, 62:10-18.
  • [20]Combat http://jlab.byu.edu/ComBat/Abstract.html webcite
  • [21]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
  • [22]Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, Guo L, Croner LJ, Boysen C, Fang H, Qian F, Amur S, Bao W, Barbacioru CC, Bertholet V, Cao XM, Chu T-M, Collins PJ, Fan X, Frueh FW, Fuscoe JC, Guo X, Han J, Herman D, Hong H, Kawasaki ES, Li Q-Z, Luo Y, Ma Y, Mei N, Peterson RL, Puri RK, Shippy R, Su Z, Sun YA, Sun H, Thorn B, Turpaz Y, Wang C, Wang SJ, Warrington JA, Willey JC, Wu J, Xie Q, Zhang L, Zhang L, Zhong S, Wolfinger RD, Tong W: The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinforma 2008, 9:S10.
  • [23]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-8.
  • [24]GPower Tutorial. http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/tutorial_01.html webcite
  • [25]Faul F, Erdfelder E, Lang A-G, Buchner A: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Meth 2007, 39:175-191.
  • [26]Szekanecz Z, Koch AE: Update on synovitis. Curr Rheumatol Rep 2001, 3:53-63.
  • [27]Postlethwaite AE, Holness MA, Katai H, Raghow R: Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest 1992, 90:1479-1485.
  • [28]Kinne RW, Boehm S, Iftner T, Aigner T, Vornehm S, Weseloh G, Bravo R, Emmrich F, Kroczek RA: Synovial fibroblast-like cells strongly express jun-B and C-fos proto-oncogenes in rheumatoid- and osteoarthritis. Scand J Rheumatol Suppl 1995, 101:121-125.
  • [29]Seki T, Selby J, Häupl T, Winchester R: Use of differential subtraction method to identify genes that characterize the phenotype of cultured rheumatoid arthritis synoviocytes. Arthritis Rheum 1998, 41:1356-1364.
  • [30]Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H: Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem 1990, 194:721-730.
  • [31]Gadher SJ, Eyre DR, Duance VC, Wotton SF, Heck LW, Schmid TM, Woolley DE: Susceptibility of cartilage collagens type II, IX, X, and XI to human synovial collagenase and neutrophil elastase. Eur J Biochem 1988, 175:1-7.
  • [32]Miller EJ, Gay S: The collagens: an overview and update. Meth Enzymol 1987, 144:3-41.
  • [33]Ricard-Blum S: The collagen family. Cold Spring Harb Perspect Biol 2011, 3:a004978.
  • [34]Hjorten R, Hansen U, Underwood RA, Telfer HE, Fernandes RJ, Krakow D, Sebald E, Wachsmann-Hogiu S, Bruckner P, Jacquet R, Landis WJ, Byers PH, Pace JM: Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone 2007, 41:535-542.
  • [35]Brown LJ, Alawoki M, Crawford ME, Reida T, Sears A, Torma T, Albig AR: Lipocalin-7 is a matricellular regulator of angiogenesis. PLoS One 2010, 5:e13905.
  • [36]Zvaifler NJ, Firestein GS: Pannus and pannocytes. Alternative models of joint destruction in rheumatoid arthritis. Arthritis Rheum 1994, 37:783-789.
  • [37]Karouzakis E, Gay RE, Gay S, Neidhart M: Epigenetic deregulation in rheumatoid arthritis. Adv Exp Med Biol 2011, 711:137-149.
  • [38]Kinne RW, Liehr T, Beensen V, Kunisch E, Zimmermann T, Holland H, Pfeiffer R, Stahl HD, Lungershausen W, Hein G, Roth A, Emmrich F, Claussen U, Froster UG: Mosaic chromosomal aberrations in synovial fibroblasts of patients with rheumatoid arthritis, osteoarthritis, and other inflammatory joint diseases. Arthritis Res 2001, 3:319-330. BioMed Central Full Text
  • [39]Dunger S, Neumann S, Zell R, Birch-Hirschfeld E, Stelzner A, Paschke R, Kinne RW, Sickinger S: Mutation detection in mosaic situations: RNA mismatch assay and denaturing gradient gel electrophoresis are more sensitive than conventional cycle sequencing. Anal Biochem 2001, 294:89-93.
  文献评价指标  
  下载次数:6次 浏览次数:17次