期刊论文详细信息
BMC Microbiology
The RNA processing enzyme polynucleotide phosphorylase negatively controls biofilm formation by repressing poly-N-acetylglucosamine (PNAG) production in Escherichia coli C
Paolo Landini1  Federica Briani1  Gianni Dehò1  Davide Antoniani1  Thomas Carzaniga1 
[1] Department of Biosciences, University of Milan, Via Celoria 26, Milan, 20133, Italy
关键词: PNPase;    Cell adhesion;    EPS;    Degradosome;    RNA processing;    Biofilm;   
Others  :  1144953
DOI  :  10.1186/1471-2180-12-270
 received in 2012-06-19, accepted in 2012-10-01,  发布年份 2012
PDF
【 摘 要 】

Background

Transition from planktonic cells to biofilm is mediated by production of adhesion factors, such as extracellular polysaccharides (EPS), and modulated by complex regulatory networks that, in addition to controlling production of adhesion factors, redirect bacterial cell metabolism to the biofilm mode.

Results

Deletion of the pnp gene, encoding polynucleotide phosphorylase, an RNA processing enzyme and a component of the RNA degradosome, results in increased biofilm formation in Escherichia coli. This effect is particularly pronounced in the E. coli strain C-1a, in which deletion of the pnp gene leads to strong cell aggregation in liquid medium. Cell aggregation is dependent on the EPS poly-N-acetylglucosamine (PNAG), thus suggesting negative regulation of the PNAG biosynthetic operon pgaABCD by PNPase. Indeed, pgaABCD transcript levels are higher in the pnp mutant. Negative control of pgaABCD expression by PNPase takes place at mRNA stability level and involves the 5’-untranslated region of the pgaABCD transcript, which serves as a cis-element regulating pgaABCD transcript stability and translatability.

Conclusions

Our results demonstrate that PNPase is necessary to maintain bacterial cells in the planktonic mode through down-regulation of pgaABCD expression and PNAG production.

【 授权许可】

   
2012 Carzaniga et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331054802379.pdf 1280KB PDF download
Figure 5. 24KB Image download
Figure 4. 41KB Image download
Figure 3. 20KB Image download
Figure 2. 64KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Costerton JW: Overview of microbial biofilms. J Ind Microbiol 1995, 15:137-140.
  • [2]Schembri MA, Kjaergaard K, Klemm P: Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003, 48:253-267.
  • [3]Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, et al.: Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 2004, 51:659-674.
  • [4]Shapiro JA: Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 1998, 52:81-104.
  • [5]Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al.: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 2006, 59:1114-1128.
  • [6]White AP, Surette MG: Comparative genetics of the rdar morphotype in Salmonella. J Bacteriol 2006, 188:8395-8406.
  • [7]Hughes KA, Sutherland IW, Jones MV: Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 1998, 144:3039-3047.
  • [8]Merritt JH, Brothers KM, Kuchma SL, O'Toole GA: SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 2007, 189:8154-8164.
  • [9]Pehl MJ, Jamieson WD, Kong K, Forbester JL, Fredendall RJ, Gregory GA, et al.: Genes that influence swarming motility and biofilm formation in Variovorax paradoxus EPS. PLoS One 2012, 7:e31832.
  • [10]Romling U, Rohde M, Olsen A, Normark S, Reinkoster J: AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 2000, 36:10-23.
  • [11]Gerstel U, Park C, Romling U: Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 2003, 49:639-654.
  • [12]Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T: Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 2005, 7:894-906.
  • [13]Karatan E, Watnick P: Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009, 73:310-347.
  • [14]Haugo AJ, Watnick PI: Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 2002, 45:471-483.
  • [15]Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR: Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 2010, 78:158-172.
  • [16]Ross P, Mayer R, Benziman M: Cellulose biosynthesis and function in bacteria. Microbiol Rev 1991, 55:35-58.
  • [17]Simm R, Morr M, Kader A, Nimtz M, Romling U: GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004, 53:1123-1134.
  • [18]Schirmer T, Jenal U: Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 2009, 7:724-735.
  • [19]Mohanty BK, Kushner SR: Polynucleotide phosphorylase, RNase II and RNase E play different roles in the in vivo modulation of polyadenylation in Escherichia coli. Mol Microbiol 2000, 36:982-994.
  • [20]Mohanty BK, Kushner SR: The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Nucleic Acids Res 2006, 34:5695-5704.
  • [21]Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM: Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 1994, 76:889-900.
  • [22]Miczak A, Kaberdin VR, Wei CL, Lin-Chao S: Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci USA 1996, 93:3865-3869.
  • [23]Cardenas PP, Carzaniga T, Zangrossi S, Briani F, Garcia-Tirado E, Deho G, et al.: Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic Acids Res 2011, 39:9250-9261.
  • [24]Rath D, Mangoli SH, Pagedar AR, Jawali N: Involvement of pnp in survival of UV radiation in Escherichia coli K-12. Microbiology 2012, 158:1196-1205.
  • [25]Zangrossi S, Briani F, Ghisotti D, Regonesi ME, Tortora P, Dehò G: Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol 2000, 36:1470-1480.
  • [26]Piazza F, Zappone M, Sana M, Briani F, Dehò G: Polynucleotide phosphorylase of Escherichia coli is required for the establishment of bacteriophage P4 immunity. J Bacteriol 1996, 178:5513-5521.
  • [27]De Lay N, Gottesman S: Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA 2011, 17:1172-1189.
  • [28]Boehm A, Vogel J: The csgD mRNA as a hub for signal integration via multiple small RNAs. Mol Microbiol 2012, 84:1-5.
  • [29]Bertani G, Weigle JJ: Host controlled variation in bacterial viruses. J Bacteriol 1953, 65:113-121.
  • [30]Daniel AS, Fuller-Pace FV, Legge DM, Murray NE: Distribution and diversity of hsd genes in Escherichia coli and other enteric bacteria. J Bacteriol 1988, 170:1775-1782.
  • [31]Jensen KF: The Escherichia coli K-12 "wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression. J Bacteriol 1993, 175:3401-3407.
  • [32]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97:6640-6645.
  • [33]Gualdi L, Tagliabue L, Landini P: Biofilm formation-gene expression relay system in Escherichia coli: modulation of sigmaS-dependent gene expression by the CsgD regulatory protein via sigmaS protein stabilization. J Bacteriol 2007, 189:8034-8043.
  • [34]Dehò G, Zangrossi S, Sabbattini P, Sironi G, Ghisotti D: Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 1992, 6:3415-3425.
  • [35]Briani F, Del Favero M, Capizzuto R, Consonni C, Zangrossi S, Greco C, et al.: Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie 2007, 89:145-157.
  • [36]Briani F, Curti S, Rossi F, Carzaniga T, Mauri P, Dehò G: Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli. RNA 2008, 14:2417-2429.
  • [37]Jaspers MC, Suske WA, Schmid A, Goslings DA, Kohler HP, Der Meer v Jr: HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. J Bacteriol 2000, 182:405-417.
  • [38]Cerca N, Jefferson KK: Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 2008, 283:36-41.
  • [39]Maira-Litran T, Kropec A, Abeygunawardana C, Joyce J, Mark G III, Goldmann DA, et al.: Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 2002, 70:4433-4440.
  • [40]Sasaki I, Bertani G: Growth abnormalities in Hfr derivatives of Escherichia coli strain C. J Gen Microbiol 1965, 40:365-376.
  • [41]Regonesi ME, Del Favero M, Basilico F, Briani F, Benazzi L, Tortora P, et al.: Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 2006, 88:151-161.
  • [42]Olsen A, Jonsson A, Normark S: Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 1989, 338:652-655.
  • [43]Romling U, Bian Z, Hammar M, Sierralta WD, Normark S: Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 1998, 180:722-731.
  • [44]Perry RD, Pendrak ML, Schuetze P: Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 1990, 172:5929-5937.
  • [45]Nucleo E, Steffanoni L, Fugazza G, Migliavacca R, Giacobone E, Navarra A, et al.: Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol 2009, 9:270. BioMed Central Full Text
  • [46]Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C: Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2000, 2:450-464.
  • [47]May T, Okabe S: Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 2008, 190:7479-7490.
  • [48]Wang X, Preston JF III, Romeo T: The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004, 186:2724-2734.
  • [49]Gualdi L, Tagliabue L, Bertagnoli S, Ierano T, De Castro C, Landini P: Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 2008, 154:2017-2024.
  • [50]Ma Q, Wood TK: OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system. Environ Microbiol 2009, 11:2735-2746.
  • [51]Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T: CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 2005, 56:1648-1663.
  • [52]Goller C, Wang X, Itoh Y, Romeo T: The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 2006, 188:8022-8032.
  • [53]Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, et al.: A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 2003, 48:657-670.
  • [54]Suzuki K, Babitzke P, Kushner SR, Romeo T: Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 2006, 20:2605-2617.
  • [55]Thomason MK, Fontaine F, De Lay N, Storz G: A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol Microbiol 2012, 84:17-35.
  • [56]Andrade JM, Pobre V, Matos AM, Arraiano CM: The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA 2012, 18:844-855.
  • [57]Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM: Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 2007, 35:7651-7664.
  • [58]Timmermans J, Van Melderen L: Conditional essentiality of the csrA gene in Escherichia coli. J Bacteriol 2009, 191:1722-1724.
  • [59]Andrade JM, Arraiano CM: PNPase is a key player in the regulation of small RNAs that control the expression of outer membrane proteins. Rna-A Publication of the Rna Society 2008, 14:543-551.
  • [60]Rouf SF, Ahmad I, Anwar N, Vodnala SK, Kader A, Romling U, et al.: Opposing contributions of polynucleotide phosphorylase and the membrane protein NlpI to biofilm formation by Salmonella enterica serovar Typhimurium. J Bacteriol 2011, 193:580-582.
  • [61]Awano N, Inouye M, Phadtare S: RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II. J Bacteriol 2008, 190:5924-5933.
  • [62]Mohanty BK, Kushner SR: Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol Microbiol 2003, 50:645-658.
  • [63]Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA: Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol 2011, 407:633-639.
  • [64]Del Favero M, Mazzantini E, Briani F, Zangrossi S, Tortora P, Deho G: Regulation of Escherichia coli polynucleotide phosphorylase by ATP. J Biol Chem 2008, 283:27355-27359.
  • [65]Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR, Du D, et al.: Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. J Biol Chem 2011, 286:14315-14323.
  • [66]Jorgensen MG, Nielsen JS, Boysen A, Franch T, Moller-Jensen J, Valentin-Hansen P: Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol Microbiol 2012, 84:36-50.
  • [67]Mika F, Busse S, Possling A, Berkholz J, Tschowri N, Sommerfeldt N, et al.: Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol Microbiol 2012, 84:51-65.
  • [68]Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al.: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2006:2.
  • [69]Tagliabue L, Antoniani D, Maciag A, Bocci P, Raffaelli N, Landini P: The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. Microbiology 2010, 156:2901-2911.
  • [70]Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995, 177:4121-4130.
  • [71]Ghetta A, Matus-Ortega M, Garcia-Mena J, Dehò G, Tortora P, Regonesi ME: Polynucleotide phosphorylase-based photometric assay for inorganic phosphate. Anal Biochem 2004, 327:209-214.
  • [72]Cairrao F, Chora A, Zilhao R, Carpousis AJ, Arraiano CM: RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol Microbiol 2001, 39:1550-1561.
  • [73]Lessl M, Balzer D, Lurz R, Waters VL, Guiney DG, Lanka E: Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans. J Bacteriol 1992, 174:2493-2500.
  • [74]Wall JD, Harriman PD: Phage P1 mutants with altered transducing abilities for Escherichia coli. Virology 1974, 59:532-544.
  文献评价指标  
  下载次数:52次 浏览次数:17次