期刊论文详细信息
BMC Medical Genetics
Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities
Sha Tang1  Elizabeth McPherson2  Ruth M. Baxter1  Hsiao-Mei Lu1  Zoe Powis1  Robert Huether1  Deepali N. Shinde1  Kristen Rasmussen2  Cameron Mroske1 
[1] Ambry Genetics Corporation, Aliso Viejo 92656, CA, USA;Marshfield Clinic Research Foundation, Marshfield 54449, WI, USA
关键词: Missense alteration;    Gain-of-function;    Gonadal mosaicism;    Megalencephaly;    Macrocephaly;    ASD;    Autism;    MTOR;    Family-trio;    Diagnostic exome sequencing;   
Others  :  1230628
DOI  :  10.1186/s12881-015-0240-8
 received in 2015-07-03, accepted in 2015-10-03,  发布年份 2015
PDF
【 摘 要 】

Background

In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described.

Case presentation

We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism.

Conclusion

Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present multiple neurological and developmental abnormalities. Our report brings the total number of families who harbor MTOR p.E1799K in association with megalencephaly and ID to three. In each case, evidence suggests that p.E1799K arose in the affected individuals due to gonadal mosaicism. Thus, MTOR p.E1799K can now be classified as a pathogenic GOF mutation that causes megalencephaly and cognitive impairment in humans.

【 授权许可】

   
2015 Mroske et al.

【 预 览 】
附件列表
Files Size Format View
20151107020635230.pdf 1495KB PDF download
Fig. 3. 66KB Image download
Fig. 2. 80KB Image download
Fig. 1. 72KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Publishing, Arlington; 2013.
  • [2]Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet. 2001; 2(12):943-955.
  • [3]Smalley SL, Asarnow RF, Spence MA. Autism and genetics. A decade of research. Arch Gen Psychiatry. 1988; 45(10):953-961.
  • [4]Talebizadeh Z, Bittel DC, Miles JH, Takahashi N, Wang CH, Kibiryeva N, Butler MG. No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet. 2002; 39(11):e70.
  • [5]Yonan AL, Alarcon M, Cheng R, Magnusson PK, Spence SJ, Palmer AA, Grunn A, Juo SH, Terwilliger JD, Liu J et al.. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet. 2003; 73(4):886-897.
  • [6]Fombonne E, Roge B, Claverie J, Courty S, Fremolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord. 1999; 29(2):113-119.
  • [7]Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000; 37(11):828-830.
  • [8]Hanssen AM, Fryns JP. Cowden syndrome. J Med Genet. 1995; 32(2):117-119.
  • [9]Reardon W, Zhou XP, Eng C. A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. J Med Genet. 2001; 38(12):820-823.
  • [10]Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP. PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet. 2001; 105(6):521-524.
  • [11]Zori RT, Marsh DJ, Graham GE, Marliss EB, Eng C. Germline PTEN mutation in a family with Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet. 1998; 80(4):399-402.
  • [12]Schaefer GB, Mendelsohn NJ, Professional P, Guidelines C. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013; 15(5):399-407.
  • [13]Moore PA, Rosen CA, Carter KC. Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization. Genomics. 1996; 33(2):331-332.
  • [14]Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004; 18(16):1926-1945.
  • [15]Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010; 33(2):67-75.
  • [16]Crino PB. Focal brain malformations: a spectrum of disorders along the mTOR cascade. Novartis Found Symp. 2007; 288:260-272.
  • [17]Wong M, Crino PB: mTOR and Epileptogenesis in Developmental Brain Malformations. In: Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition. Edited by Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, 4th edn. Bethesda (MD); 2012.
  • [18]Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, Jordan A, Beck AH, Sabatini DM. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014; 4(5):554-563.
  • [19]Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A et al.. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012; 44(8):941-945.
  • [20]Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser T et al.. De novo mutations in epileptic encephalopathies. Nature. 2013; 501(7466):217-221.
  • [21]Soden S, Saunders CJ, Willig LK, FArrow EG, Smith LD, Petrikin JE, LePichon JB, Miller NA, Thiffault I, Dinwiddle DL, Twist G, Noll A, Heese BA, Zellmer L, Atherton AM, Abelmoity AT, Safina N, Nyp SS, Zuccarelli B, Larson IA, Modrcin A, Herd S, Creed M, Ye Z, Yuan X, Brodsky RA, Kingsmore SF. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014; 6(265):265ra168.
  • [22]Baynam G, Overkov A, Davis M, Mina K, Schofield L, Allcock R, Laing N, Cook M, Dawkins H, Goldblatt J. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. Am J Med Genet A. 2015; 167(7):1659-67.
  • [23]Ghahramani N, Klein S, Ghahremani S, Lee H, Strom S, Deignan J, Grody WW, Nelson SF, Vilain E, Martinez-Agosto JA A. Activating Mutations in mTOR Cause Human Overgrowth Associated with Macrocephaly, Intellectual Disability, and Distinct Dysmorphic Features. ACMG Annual Clinical Genetics Meeting. American College of Medical Genetics and Genomics, Salt Lake City; 2015.
  • [24]Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C et al.. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009; 27(2):182-189.
  • [25]Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D'Ascenzo M, Kitzman J, Wu YQ, Newsham I, Richmond TA, et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 11(6):R62. http://www. genomebiology.com webcite
  • [26]Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, Baxter RM, Zeng W, Mroske C, Parra MC et al.: Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 2014:1–9
  • [27]Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009; 25(21):2865-2871.
  • [28]Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, Cooper DN. The Human Gene Mutation Database: 2008 update. Genome Med. 2009; 1(1):13. BioMed Central Full Text
  • [29]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29(1):308-311.
  • [30]A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061-1073.
  • [31]The International HapMap Project. Nature. 2003; 426(6968):789-796.
  • [32]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248-249.
  • [33]Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009; 4(7):1073-1081.
  • [34]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011; 29(1):24-26.
  • [35]Tsai MF, Lin YJ, Cheng YC, Lee KH, Huang CC, Chen YT, Yao A. PrimerZ: streamlined primer design for promoters, exons and human SNPs. Nucleic Acids Res. 2007; 35(Web Server issue):W63-65.
  • [36]Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature. 2013; 497(7448):217-223.
  • [37]Al-Owain M, Kaya N, Al-Zaidan H, Al-Hashmi N, Al-Bakheet A, Al-Muhaizea M, Chedrawi A, Basran RK, Milunsky A. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet. 2011; 79(4):363-370.
  • [38]Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res. 2011; 8(4):270-285.
  • [39]Smrz D, Kim MS, Zhang S, Mock BA, Smrzova S, DuBois W, Simakova O, Maric I, Wilson TM, Metcalfe DD et al.. mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011; 118(26):6803-6813.
  • [40]Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Frontiers Immunology. 2012; 3:119.
  • [41]Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM. Activation and function of the mTORC1 pathway in mast cells. J Immunol. 2008; 180(7):4586-4595.
  • [42]Theoharides TC. Is a subtype of autism an allergy of the brain? Clin Ther. 2013; 35(5):584-591.
  • [43]Angelidou A, Francis K, Vasiadi M, Alysandratos KD, Zhang B, Theoharides A, Lykouras L, Sideri K, Kalogeromitros D, Theoharides TC. Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation. 2010; 7:48. BioMed Central Full Text
  • [44]Dyment DA, Smith AC, Alcantara D, Schwartzentruber JA, Basel-Vanagaite L, Curry CJ, Temple IK, Reardon W, Mansour S, Haq MR et al.. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet. 2013; 93(1):158-166.
  • [45]Sellitto C, Li L, Gao J, Robinson ML, Lin RZ, Mathias RT, White TW. AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development. J Clin Invest. 2013; 123(12):5401-5409.
  • [46]NHLBI Exome Sequencing Project (ESP). Exome Variant Server. (http://evs.gs.washington.edu/EVS/) Accessed Sep, 2015.
  • [47]Ohne Y, Takahara T, Hatakeyama R, Matsuzaki T, Noda M, Mizushima N, Maeda T. Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem. 2008; 283(46):31861-31870.
  • [48]Exome Aggregation Consortium (ExAC). Broad Institute, Cambridge, MA. (http://exac.broadinstitute.org) Accessed Sep, 2015.
  • [49]Smith LD, Saunders CJ, Dinwiddie DL, Atherton AM, Miller NA, Soden SE, Farrow EG, Ahmed TG A, Kingsmore SF. Exome Sequencing Reveals De Novo Germline Mutation of the Mammalian Target of Rapamycin (MTOR) in a Patient with Megalencephaly and Intractable Seizures. J Genomes Exomes. 2013; 2:63-72.
  文献评价指标  
  下载次数:18次 浏览次数:12次