期刊论文详细信息
BMC Genomics
Characterization of age signatures of DNA methylation in normal and cancer tissues from multiple studies
KiYoung Lee2  Gyesoon Yoon1  Hyosil Kim2  Kyung Kim2  Jihyun Kim2 
[1]Department of Biochemistry, Ajou University School of Medicine, Suwon 443-721, South Korea
[2]Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 443-380, South Korea
关键词: Cancer;    Systems biology;    Meta-analysis;    Aging;    Age signature;    Epigenetics;    DNA methylation;   
Others  :  1092147
DOI  :  10.1186/1471-2164-15-997
 received in 2014-03-07, accepted in 2014-08-18,  发布年份 2014
PDF
【 摘 要 】

Background

DNA methylation (DNAm) levels can be used to predict the chronological age of tissues; however, the characteristics of DNAm age signatures in normal and cancer tissues are not well studied using multiple studies.

Results

We studied approximately 4000 normal and cancer samples with multiple tissue types from diverse studies, and using linear and nonlinear regression models identified reliable tissue type-invariant DNAm age signatures. A normal signature comprising 127 CpG loci was highly enriched on the X chromosome. Age-hypermethylated loci were enriched for guanine–and-cytosine-rich regions in CpG islands (CGIs), whereas age-hypomethylated loci were enriched for adenine–and-thymine-rich regions in non-CGIs. However, the cancer signature comprised only 26 age-hypomethylated loci, none on the X chromosome, and with no overlap with the normal signature. Genes related to the normal signature were enriched for aging-related gene ontology terms including metabolic processes, immune system processes, and cell proliferation. The related gene products of the normal signature had more than the average number of interacting partners in a protein interaction network and had a tendency not to interact directly with each other. The genomic sequences of the normal signature were well conserved and the age-associated DNAm levels could satisfactorily predict the chronological ages of tissues regardless of tissue type. Interestingly, the age-associated DNAm increases or decreases of the normal signature were aberrantly accelerated in cancer samples.

Conclusion

These tissue type-invariant DNAm age signatures in normal and cancer can be used to address important questions in developmental biology and cancer research.

【 授权许可】

   
2014 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128180646547.pdf 2359KB PDF download
20150413043817889.pdf 363KB PDF download
Figure 6. 194KB Image download
Figure 5. 105KB Image download
Figure 4. 141KB Image download
Figure 3. 82KB Image download
Figure 2. 92KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Gal-Yam EN, Saito Y, Egger G, Jones PA: Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 2008, 59:267-280.
  • [2]Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP: The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 2012, 15(5):483-494.
  • [3]Bock C, Lengauer T: Computational epigenetics. Bioinformatics 2008, 24(1):1-10.
  • [4]Heyn H, Esteller M: DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 2012, 13(10):679-692.
  • [5]Longo VD, Kennedy BK: Sirtuins in aging and age-related disease. Cell 2006, 126(2):257-268.
  • [6]Wilson VL, Smith RA, Ma S, Cutler RG: Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 1987, 262(21):9948-9951.
  • [7]Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA: Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 2012, 13(10):R97. BioMed Central Full Text
  • [8]Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K: Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013, 49(2):359-367.
  • [9]Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M, Colantuoni C, Weinberger DR, Kleinman JE, Lipska BK: DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 2012, 90(2):260-272.
  • [10]Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E: Epigenetic predictor of age. PLoS One 2011, 6(6):e14821.
  • [11]Johansson A, Enroth S, Gyllensten U: Continuous Aging of the Human DNA Methylome Throughout the Human Lifespan. PLoS One 2013, 8(6):e67378.
  • [12]Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST: Age-associated DNA methylation in pediatric populations. Genome Res 2012, 22(4):623-632.
  • [13]Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D: Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 2013, 14(9):R102. BioMed Central Full Text
  • [14]Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT: Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009, 5(8):e1000602.
  • [15]Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 2010, 20(4):440-446.
  • [16]Horvath S: DNA methylation age of human tissues and cell types. Genome Biol 2013, 14(10):R115. BioMed Central Full Text
  • [17]Bock C: Analysing and interpreting DNA methylation data. Nat Rev Genet 2012, 13(10):705-719.
  • [18]Cancer Genome Atlas N: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490(7418):61-70.
  • [19]Cancer Genome Atlas Research N: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474(7353):609-615.
  • [20]Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K, Cancer Genome Atlas Research Network: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17(5):510-522.
  • [21]Cancer Genome Atlas Research N: Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499:43-49.
  • [22]Cancer Genome Atlas N: Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487(7407):330-337.
  • [23]Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, Cibula D, Sargent A, Salvesen HB, Jacobs IJ, Kitchener HC, Teschendorff AE, Widschwendter M: The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women’s cancer. PLoS Genet 2012, 8(2):e1002517.
  • [24]Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes Dev 2011, 25(10):1010-1022.
  • [25]Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD: Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 2010, 20(4):434-439.
  • [26]Li Y, Shi L, Han C, Wang Y, Yang J, Cao C, Jiao S: Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells. Tumour Biol 2012, 33(5):1403-1410.
  • [27]Portela A, Esteller M: Epigenetic modifications and human disease. Nat Biotechnol 2010, 28(10):1057-1068.
  • [28]UniProt C: Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 2014, 42(11):7486.
  • [29]Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA, Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M, Meyer LR, Learned K, Hsu F, Hillman-Jackson J, Harte RA, Giardine B, Dreszer TR, Clawson H, Barber GP, Haussler D, Kent WJ: The UCSC Genome Browser database: update 2010. Nucleic Acids Res 2010, 38(Database issue):D613-D619.
  • [30]Doria E, Buonocore D, Focarelli A, Marzatico F: Relationship between human aging muscle and oxidative system pathway. Oxidative Med Cell Longev 2012, 2012:830257.
  • [31]Willighagen E: Package ‘genalg’. 2005.
  • [32]Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 1990, 18(20):6097-6100.
  • [33]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human Protein Reference Database–2009 update. Nucleic Acids Res 2009, 37(Database issue):D767-D772.
  • [34]Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M: The BioGRID interaction database: 2013 update. Nucleic Acids Res 2013, 41(Database issue):D816-D823.
  • [35]Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H: The IntAct molecular interaction database in 2012. Nucleic Acids Res 2012, 40(Database issue):D841-D846.
  • [36]Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G: MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 2012, 40(Database issue):D857-D861.
  • [37]Chelliah V, Laibe C, Le Novere N: BioModels Database: a repository of mathematical models of biological processes. Methods Mol Biol 2013, 1021:189-199.
  • [38]Turner B, Razick S, Turinsky AL, Vlasblom J, Crowdy EK, Cho E, Morrison K, Donaldson IM, Wodak SJ: iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database (Oxford) 2010, 2010:baq023.
  • [39]Lee K, Byun K, Hong W, Chuang HY, Pack CG, Bayarsaikhan E, Paek SH, Kim H, Shin HY, Ideker T, Lee B: Proteome-wide discovery of mislocated proteins in cancer. Genome Res 2013, 23(8):1283-1294.
  • [40]Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD: Cytoscape Web: an interactive web-based network browser. Bioinformatics 2010, 26(18):2347-2348.
  文献评价指标  
  下载次数:86次 浏览次数:38次