期刊论文详细信息
BMC Infectious Diseases
The distribution of incubation and relapse times in experimental human infections with the malaria parasite Plasmodium vivax
Alex R Cook4  Richard J Coker3  Zheng Gao1  Xiahong Zhao2  Andrew A Lover2 
[1] Faculty of Engineering, National University of Singapore, Singapore, Singapore;Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore;Communicable Diseases Policy Research Group, London School of Hygiene and Tropical Medicine, Bangkok, Thailand;Communicable Diseases Centre, Tan Tock Seng Hospital, Singapore, Singapore
关键词: Relapse;    Incubation period;    Infectious disease models;    vivax;    Malaria;   
Others  :  1125450
DOI  :  10.1186/1471-2334-14-539
 received in 2014-05-24, accepted in 2014-09-25,  发布年份 2014
PDF
【 摘 要 】

Background

The distributions of incubation and relapse periods are key components of infectious disease models for the malaria parasite Plasmodium vivax; however, detailed distributions based upon experimental data are lacking.

Methods

Using a range of historical, experimental mosquito-transmitted human infections, Bayesian estimation with non-informative priors was used to determine parametric distributions that can be readily implemented for the incubation period and time-to-first relapse in P. vivax infections, including global subregions by parasite source. These analyses were complemented with a pooled analysis of observational human infection data with infections that included malaria chemoprophylaxis and long-latencies. The epidemiological impact of these distributional assumptions was explored using stochastic epidemic simulations at a fixed reproductive number while varying the underlying distribution of incubation periods.

Results

Using the Deviance Information Criteria to compare parameterizations, experimental incubation periods are most closely modeled with a shifted log-logistic distribution; a log-logistic mixture is the best fit for incubations in observational studies. The mixture Gompertz distribution was the best fit for experimental times-to-relapse among the tested parameterizations, with some variation by geographic subregions. Simulations suggest underlying distributional assumptions have critically important impacts on both the time-scale and total case counts within epidemics.

Conclusions

These results suggest that the exponential and gamma distributions commonly used for modeling incubation periods and relapse times inadequately capture the complexity in the distributions of event times in P. vivax malaria infections. In future models, log-logistic and Gompertz distributions should be utilized for general incubation periods and relapse times respectively, and region-specific distributions should be considered to accurately model and predict the epidemiology of this important human pathogen.

【 授权许可】

   
2014 Lover et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150217021037606.pdf 905KB PDF download
Figure 6. 41KB Image download
Figure 5. 71KB Image download
Figure 4. 45KB Image download
Figure 3. 59KB Image download
Figure 2. 46KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Baird JK: Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev 2013, 26:36-57.
  • [2]Gething PW, Elyazar IRF, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HFL, Price RN, Mueller I, Baird JK, Hay SI: A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 2012, 6:e1814.
  • [3]White NJ: Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 2011, 10:297. BioMed Central Full Text
  • [4]Battle KE, Gething PW, Elyazar IR, Moyes CL, Sinka ME, Howes RE, Guerra CA, Price RN, Baird JK, Hay SI: The global public health significance of Plasmodium vivax. Adv Parasitol 2012, 80:1.
  • [5]McKenzie FE: Why model malaria? Parasitol Today 2000, 16:511-516.
  • [6]Mandal S, Sarkar RR, Sinha S: Mathematical models of malaria - a review. Malar J 2011, 10:202. BioMed Central Full Text
  • [7]Ishikawa H, Ishii A, Nagai N, Ohmae H, Harada M, Suguri S, Leafasia J: A mathematical model for the transmission of Plasmodium vivax malaria. Parasitol Int 2003, 52:81-93.
  • [8]Pongsumpun P, Tang IM: Mathematical model for the transmission of Plasmodium vivax malaria. Int J Math Models Methods Appl Sci 2007, 3:117-121.
  • [9]Chamchod F, Beier JC: Modeling Plasmodium vivax: relapses, treatment, seasonality, and G6PD deficiency. J Theor Biol 2013, 316:25-34.
  • [10]Roy M, Bouma MJ, Ionides EL, Dhiman RC, Pascual M: The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLoS Negl Trop Dis 2013, 7:e1979.
  • [11]Sartwell PE: The distribution of incubation periods of infectious disease. Am J Epidemiol 1950, 51:310-318.
  • [12]Lover AA, Coker RJ: Quantifying effect of geographic location on epidemiology of Plasmodium vivax malaria. Emerg Infect Dis 2013, 19:1058-1065.
  • [13]Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N, Boeckel TPV, Messina JP, Shanks GD, Smith DL, Baird JK, Hay SI: Geographical variation in Plasmodium vivax relapse. Malar J 2014, 13:144. BioMed Central Full Text
  • [14]Coatney GR, Cooper WC, Ruhe DS, Young MD, Burgess RW: Studies in human malaria XVIII. The life pattern of sporozoite-induced St. Elizabeth strain vivax malaria. Am J Hyg 1950, 51:200-215.
  • [15]Brunetti R, Fritz RF, Hollister AC Jr: An outbreak of malaria in California, 1952–1953. Am J Trop Med Hyg 1954, 3:779-788.
  • [16]Kim S-J, Kim S-H, Jo S-N, Gwack J, Youn S-K, Jang J-Y: The long and short incubation periods of Plasmodium vivax malaria in Korea: the characteristics and relating factors. Infect Chemother 2013, 45:184-193.
  • [17]Li J, Collins WE, Wirtz RA, Rathore D, Lal A, McCutchan TF: Geographic subdivision of the range of the malaria parasite Plasmodium vivax. Emerg Infect Dis 2001, 7:35-42.
  • [18]Lindsey JC, Ryan LM: Methods for interval-censored data. Stat Med 1998, 17:219-238.
  • [19]Weijer C: Another Tuskegee? Am J Trop Med Hyg 1999, 61(1 Suppl):1-3.
  • [20]Harcourt BE: Making willing bodies: the University of Chicago human experiments at Stateville Penitentiary. Soc Res 2011, 78:443-478.
  • [21]Harkness JM: Nuremberg and the issue of wartime experiments on US prisoners: the Green Committee. JAMA 1996, 276:1672-1675.
  • [22]Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI: G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol 2013, 81:133-201.
  • [23]Bruce-Chwatt LJ: Terminology of relapsing malaria: enigma variations. Trans R Soc Trop Med Hyg 1984, 78:844-845.
  • [24]Gelman A, Carlin JB, Stern HS, Rubin DB: Bayesian Data Analysis. Boca Raton, London, New York, Washington, DC: Chapman and Hall/CRC Press; 2004.
  • [25]Tanner MA, Wong WH: The calculation of posterior distributions by data augmentation. J Am Stat Assoc 1987, 82:528-540.
  • [26]Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A: Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 2002, 64:583-639.
  • [27]Obadia T, Haneef R, Boëlle P-Y: The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks. BMC Med Inform Decis Mak 2012, 12:147. BioMed Central Full Text
  • [28]Bousema T, Drakeley C: Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011, 24:377-410.
  • [29]Geweke J: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian Stat. Oxford: Clarendon; 1992:169-193.
  • [30]R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: Foundation for Statistical Computing; 2013.
  • [31]MacDonald G, Cuellar CB, Foll CV: The dynamics of malaria. Bull World Health Organ 1968, 38:743-755.
  • [32]De Zoysa AP, Mendis C, Gamage-Mendis AC, Weerasinghe S, Herath PR, Mendis KN: A mathematical model for Plasmodium vivax malaria transmission: estimation of the impact of transmission-blocking immunity in an endemic area. Bull World Health Organ 1991, 69:725.
  • [33]Bitoh T, Fueda K, Ohmae H, Watanabe M, Ishikawa H: Risk analysis of the re-emergence of Plasmodium vivax malaria in Japan using a stochastic transmission model. Environ Health Prev Med 2011, 16:171-177.
  • [34]Águas R, Ferreira MU, Gomes MGM: Modeling the effects of relapse in the transmission dynamics of malaria parasites. J Parasitol Res 2012, 2012:1-8.
  • [35]Lloyd AL: Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc R Soc B Biol Sci 2001, 268:985-993.
  • [36]Wearing HJ, Rohani P, Keeling MJ: Appropriate models for the management of infectious diseases. PLoS Med 2005, 2:e174.
  • [37]Sama W, Dietz K, Smith T: Distribution of survival times of deliberate Plasmodium falciparum infections in tertiary syphilis patients. Trans R Soc Trop Med Hyg 2006, 100:811-816.
  • [38]Reich NG, Lessler J, Cummings DAT, Brookmeyer R: Estimating incubation period distributions with coarse data. Stat Med 2009, 28:2769-2784.
  • [39]Neafsey DE, Galinsky K, Jiang RHY, Young L, Sykes SM, Saif S, Gujja S, Goldberg JM, Young S, Zeng Q: The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet 2012, 44:1046-1050.
  • [40]Collins W: Origin of the St. Elizabeth strain of Plasmodium vivax. Am J Trop Med Hyg 2013, 88:726-726.
  • [41]Markus MB: Dormancy in mammalian malaria. Trends Parasitol 2012, 28:39-45.
  • [42]Horstmann P: Delayed attacks of malaria in visitors to the tropics. BMJ 1973, 3:440-442.
  • [43]Shanks GD, White NJ: The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis 2013, 13:900-906.
  • [44]Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW: Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 2004, 20:440-447.
  • [45]Collins WE: Further understanding the nature of relapse of Plasmodium vivax infection. J Infect Dis 2007, 195:919-920.
  文献评价指标  
  下载次数:64次 浏览次数:24次