期刊论文详细信息
BMC Evolutionary Biology
Whole mitochondrial genome scan for population structure and selection in the Atlantic herring
Christopher W Wheat3  Juha Merilä1  Carl André2  Amber GF Teacher4 
[1] Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland;Department of Marine Ecology – Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden;Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland;Current address: Centre for Ecology and Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Treliever Road, Penryn, Cornwall, TR10 9EZ, UK
关键词: Phylogeography;    Selection;    Mitochondria;    Genome;    Fisheries;    Clupea harengus;    Baltic sea;   
Others  :  1130530
DOI  :  10.1186/1471-2148-12-248
 received in 2012-04-18, accepted in 2012-12-18,  发布年份 2012
【 摘 要 】

Background

Marine fish, such as the Atlantic herring (Clupea harengus), often show a low degree of differentiation over large geographical regions. Despite strong environmental gradients (salinity and temperature) in the Baltic Sea, population genetic studies have shown little genetic differentiation among herring in this area, but some evidence for environmentally-induced selection has been uncovered. The mitochondrial genome is a likely target for selection in this system due to its functional role in metabolism.

Results

We sequenced whole mitochondrial genomes for herring from throughout the Baltic region (n=98) in order to investigate evidence for geographical structuring, selection, and associations between genetic and environmental variation. Three well-supported clades that predate the formation of the Baltic Sea were identified, but geographic structuring of this variation was weak (ΦST = 0.036). There was evidence for significant positive selection, particularly in the ND2, ND4 and ND5 genes, and amino acids under significant selection in these genes explained some of the clade formation. Despite uncovering evidence for selection, correlations between genetic diversity or differentiation with environmental factors (temperature, salinity, latitude) were weak.

Conclusions

The results indicate that most of the current mtDNA diversity in herring predates the formation of the Baltic Sea, and that little structuring has evolved since. Thus, fisheries management units in this region cannot be determined on the basis of mtDNA variability. Preliminary evidence for selection underlying clade formation indicates that the NADH complex may be useful for examining adaptation and population structuring at a broader geographical scale.

【 授权许可】

   
2012 Teacher et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
68KB Image download
Figure 5. 36KB Image download
Figure 4. 60KB Image download
Figure 3. 72KB Image download
Figure 2. 89KB Image download
Figure 1. 133KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Mariani S, Hutchinson WF, Hatfield EMC, Ruzzante DE, Simmonds EJ, Dahlgren TG, André C, Brigham J, Tortensen E, Carvalho GR: North Sea herring population structure revealed by microsatellite analysis. Mar Ecol Prog Ser 2005, 303:245-257.
  • [2]Dannewitz J, Maes GE, Johansson L, Wickström H, Volckaert FAM, Järvi T: Panmixia in the European eel: a matter of time. Proc R Soc Lond B Biol Sci 2005, 272:1129-1137.
  • [3]DeWoody JA, Avise JC: Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 2000, 56:461-473.
  • [4]Palumbi SR: Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 2003, 13:S146-S158.
  • [5]Cano JM, Shikano T, Kuparinen A, Merilä J: Genetic differentiation, effective population size and gene flow in marine fishes: implications for stock management. Journal of Integrated Field Science 2008, 5:1-10.
  • [6]Hauser L, Carvalho GR: Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 2008, 9:333-362.
  • [7]Shimada Y, Shikano T, Merilä J: A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol Biol Evol 2011, 28:181-193.
  • [8]Johannesson K, André C: Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic sea. Mol Ecol 2006, 15:2013-2029.
  • [9]Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ: Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 2009, 10:361-395.
  • [10]Piganeau G, Eyre-Walker A: Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS One 2009, 4:e4396.
  • [11]Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC: Natural selection shaped regional mtDNA variation in humans. PNAS 2003, 100:171-176.
  • [12]Galtier N, Nabholz B, Glémin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 2009, 18:4541-4550.
  • [13]Doiron S, Bernatchez L, Blier PU: A comparative mitogenomic analysis of the potential adaptive value of arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Mol Biol Evol 2002, 19:1902-1909.
  • [14]Ballard JWO, Kreitman M: Is mitochondrial DNA a strictly neutral marker? TREE 1995, 10:485-488.
  • [15]Ballard JWO, Whitlock C: The incomplete natural history of mitochondria. Mol Ecol 2004, 13:729-744.
  • [16]Doi A, Suzuki H, Matsuura ET: Genetic analysis of temperature-dependent transmission of mitochondrial DNA in Drosophila. Heredity 1999, 82:555-560.
  • [17]Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C: The human gene map for performance and health-related fitness phenotypes. the 2006–2007 update. Med Sci Sports Exer 2009, 41:34-72.
  • [18]Da Fonseca RR, Johnson WE, O'Brien SJ, Ramos MJ, Antunes A: The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 2008, 9:119. BioMed Central Full Text
  • [19]Zink RM: Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies. Proc R Soc Lond B Biol Sci 2005, 272:71-78.
  • [20]Grant SW, Spies IB, Canino MF: Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma. J Hered 2006, 97:571-580.
  • [21]Bradbury IR, Hubert S, Higgins B, Borza T, Bowman S, Paterson IG, Snelgrove PV, Morris CJ, Gregory RS, Hardie DC, Hutchings JA, Ruzzante DE, Taggart CT, Bentzen P: Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature. Proc R Soc Lond B Biol Sci 2010, 277:3725-3734.
  • [22]Dalziel AC, Moyes CD, Fredriksson E, Lougheed SC: Molecular evolution of cytochrome c oxidase in high-performance fish (Teleostei: Scombroidei). J Mol Evol 2006, 62:319-331.
  • [23]Garvin MR, Bielwaski JP, Gharett AJ: Positive Darwinian selection in the piston that powers proton pumps in Complex I of the mitochondria of Pacific salmon. PLoS One 2011, 6:e24127.
  • [24]Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willerslev E, Gilbert MTP, da Fonseca RR: Positive selection on the killer whale mitogenome. Biol Lett 2010, 7:116-118.
  • [25]Hellberg ME: Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 2009, 40:291-310.
  • [26]Carr SM, Marshall HD: Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): Origins of the “Codmother”, transatlantic vicariance and midglacial population expansion. Genetics 2008, 180:381-389.
  • [27]Björck S: A review of the history of the Baltic sea, 13.0-8.0 ka BP. Quat Int 1995, 27:19-40.
  • [28]Bekkevold D, André C, Dahlgren TG, Clausen LAW, Torstensen E, Mosegaard H, Carvalho GR, Christensen TB, Norlinder E, Ruzzante DE: Environmental correlates of population differentiation in Atlantic herring. Evolution 2005, 59:2656-2668.
  • [29]Gaggiotti OE, Bekkevold D, Jorgensen HBH, Foll M, Carvalho GR, André C, Ruzzante DE: Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: atlantic herring as a case study. Evolution 2009, 63:2939-2951.
  • [30]Larsson LC, Laikre L, Palm S, André C, Carvalho GR, Ryman N: Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus. Mol Ecol 2007, 16:1135-1147.
  • [31]Larsson LC, Laikre L, André C, Dahlgren TG, Ryman N: Temporally stable genetic structure of heavily exploited Atlantic herring (Clupea harengus) in Swedish waters. Heredity 2010, 104:40-51.
  • [32]André C, Larsson LC, Laikre L, Bekkevold D, Brigham J, Carvalho GR, Dahlgren TG, Hutchinson WF, Mariani S, Mudde K, Ruzzante DE, Ryman N: Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 2011, 106:270-280.
  • [33]Jørgensen HBH, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V: Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic sea. Mol Ecol 2005, 14:3219-3234.
  • [34]Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden R, Carvalho GR, Bekkevold D, FPT Consortium: Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 2012, 21:3686-3703.
  • [35]Teacher AGF, André C, Jonsson PR, Merilä J: Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic sea. Evol ApplIn press
  • [36]Lamichhaney S, Barrio AM, Rafati N, Sundström G, Rubin C-J, Gilbert ER, Berglund J, Wetterbom A, Laikre L, Webster MT, Grabherr M, Ryman N, Andersson L: Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. PNASOnline early
  • [37]Parmanne R: Growth, morphological variation and migrations of herring (Clupea harengusL.) in the Baltic sea. Finn Fish Res 1990, 10:1-48.
  • [38]Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by Krawetz S, Misener S. Totowa, NJ: Humana Press; 2000:365-386.
  • [39]Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A: Geneious v5.4. http://www.geneious.com/ webcite
  • [40]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [41]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [42]Ronquist F, Huelsenbeck JP: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [43]Rambaut A, Drummond AJ: Tracer v1.4. 2007. http://beast.bio.ed.ac.uk/Tracer webcite
  • [44]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [45]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2008. ISBN 3-900051-07-0 [http://www.R-project.org webcite]
  • [46]Drummond A, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [47]Lavoué S, Miya M, Saitoh K, Ishiguro NB, Nishida M: Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. Mol Phylogenet Evol 2007, 43:1096-1105.
  • [48]Wilson AB, Tuegels GG, Meyer A: Marine incursion: the freshwater herring of lake Tanganyika are the product of a marine invasion into West Africa. PLoS One 2008, 3:e1979.
  • [49]Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [50]Google: Google Earth (Version 6). 2011. [http://www.google.com/earth/index.html webcite]
  • [51]Holm S: A simple sequentially rejective multiple test procedure. Scand Stat 1979, 6:65-70.
  • [52]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 1995, 57:289-300.
  • [53]Nielsen R: Molecular signatures of natural selection. Annu Rev Genet 2005, 39:197-218.
  • [54]Sharp PM: In search of molecular Darwinism. Nature 1997, 385:111-112.
  • [55]Crandall KA, Kelsey CR, Imamichi H, Salzman NP: Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol Biol Evol 1999, 16:372-382.
  • [56]Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA: TreeSAAP: Selection on amino acid properties using phylogenetic trees. Bioinformatics 2003, 19:671-672.
  • [57]Burridge CP, Craw D, Fletcher D, Waters JM: Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 2008, 25:624-633.
  • [58]Ho SYW, Phillips MJ, Cooper A, Drummond AJ: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005, 22:1561-1568.
  • [59]Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ: Evidence for time dependency of molecular rate estimates. Syst Biol 2007, 56:515-522.
  • [60]Liu J-X, Tatarenkov A, Beacham TD, Gorbachev V, Wildes S, Avise JC: Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii). Mol Ecol 2011, 20:3879-3893.
  • [61]Teacher AGF, Shikano T, Karjalainen ME, Merilä J: Phylogeography and genetic structuring of European nine-spined sticklebacks (Pungitius pungitius)—mitochondrial DNA evidence. PLoS One 2011, 6:e19476.
  • [62]Luttikhuizen PC, Drent J, Baker AJ: Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 2003, 12:2215-2229.
  • [63]Stewart JB, Freyer C, Elson JL, Larsson NG: Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet 2008, 9:657-662.
  • [64]Brandt U: Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 2006, 75:69-92.
  • [65]Gillespie JH: Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 2000, 155:909-919.
  • [66]Meiklejohn CD, Montooth KL, Rand DM: Positive and negative selection on the mitochondrial genome. Trends Genet 2007, 23:259-263.
  • [67]Moran MD: Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 2003, 100:403-405.
  • [68]Molitor V, Trnka M, Erber W, Steffan I, Riviere ME, Arrio B, Springer-Lederer H, Peschek GA: Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes from the cyanobacterium Anacystis nidulans. Arch Microbiol 1990, 154:112-119.
  • [69]Fry IV, Hufleijt M, Erber WWA, Peschek GA, Packer L: The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 1986, 244:686-691.
  • [70]Svensson AS, Johansson FI, Moller IM, Rasmusson AG: Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Lett 2002, 517:79-82.
  • [71]Allendorf FW, Hohenlohe PA, Luikart G: Genomics and the future of conservation genetics. Nat Rev Genet 2010, 11:697-709.
  文献评价指标  
  下载次数:83次 浏览次数:41次