期刊论文详细信息
BMC Evolutionary Biology
Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses
De-Zhu Li2  Zhi-Rong Zhang2  Hong-Tao Li2  Min Tang1  Jun-Bo Yang2 
[1] College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China;Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
关键词: Divergence hotspot;    Phylogeny;    Organelle-scale barcodes;    Species identification;    Phylogenomics;    Chloroplast genome;   
Others  :  1126978
DOI  :  10.1186/1471-2148-13-84
 received in 2012-12-27, accepted in 2013-04-16,  发布年份 2013
PDF
【 摘 要 】

Background

Cymbidium orchids, including some 50 species, are the famous flowers, and they possess high commercial value in the floricultural industry. Furthermore, the values of different orchids are great differences. However, species identification is very difficult. To a certain degree, chloroplast DNA sequence data are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. However, there is no evidence that a short sequence can distinguish all plant species from each other in order to infer phylogenetic relationships. Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution.

Results

The complete nucleotide sequences of eight individuals from a total of five Cymbidium species’ chloroplast (cp) genomes were determined using Illumina sequencing technology of the total DNA via a combination of de novo and reference-guided assembly. The length of the Cymbidium cp genome is about 155 kb. The cp genomes contain 123 unique genes, and the IR regions contain 24 duplicates. Although the genomes, including genome structure, gene order and orientation, are similar to those of other orchids, they are not evolutionarily conservative. The cp genome of Cymbidium evolved moderately with more than 3% sequence divergence, which could provide enough information for phylogeny. Rapidly evolving chloroplast genome regions were identified and 11 new divergence hotspot regions were disclosed for further phylogenetic study and species identification in Orchidaceae.

Conclusions

Phylogenomic analyses were conducted using 10 complete chloroplast genomes from seven orchid species. These data accurately identified the individuals and established the phylogenetic relationships between the species. The results reveal that phylogenomics based on organelle genome sequencing lights the species identification—organelle-scale “barcodes”, and is also an effective approach for studying whole populations and phylogenetic characteristics of Cymbidium.

【 授权许可】

   
2013 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150219024521473.pdf 1565KB PDF download
Figure 3. 68KB Image download
Figure 2. 370KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Chen XQ, Liu ZJ, Zhu GH, Lang KY, Ji ZH, Luo YB, Jin XH, Cribb PJ, Wood JJ, Gale SW, et al.: Orchidaceae. In Flora of China. Edited by Wu ZY, Raven PH, Hong DY. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press; 2009:260.
  • [2]Du Puy D, Cribb P: The Genus Cymbidium, 2nd edn. Surrey, United Kingdom: Royal Botanic Gardens, Kew Publishing; 2007.
  • [3]Du Puy D, Cribb P: The genus Cymbidium. London and Portland, Oregon: Christopher Helm and Timber Press; 1988.
  • [4]Liu ZJ, Chen SC, Ru ZZ: The genus Cymbidium in China. Beijing, China: Science Press; 2006.
  • [5]van den Berg C, Ryan A, Cribb PJ, Chase MW: Molecular phylogenetics of Cymbidium (Orchidaceae: Maxillarieae): Sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA and plastid matK. Lindleyana 2002, 17(2):102-111.
  • [6]Sharma SK, Dkhar J, Kumaria S, Tandon P, Rao SR: Assessment of phylogenetic inter-relationships in the genus Cymbidium (Orchidaceae) based on internal transcribed spacer region of rDNA. Gene 2012, 495(1):10-15.
  • [7]Pornarong S: DNA barcoding of the Cymbidium species (Orchidaceae) in Thailand. Afr J Agric Res 2012, 7(3):393-404.
  • [8]Choi SH, Kim MJ, Lee JS, Ryu KH: Genetic diversity and phylogenetic relationships among and within species of oriental cymbidiums based on RAPD analysis. Sci Hortic 2006, 108(1):79-85.
  • [9]Obara-Okeyo P, Kako S: Genetic diversity and identification of Cymbidium cultivars as measured by random amplified polymorphic DNA (RAPD) markers. Euphytica 1998, 99(2):95-101.
  • [10]Wang HZ, Lu JJ, Hu X, Liu JJ: Genetic variation and cultivar identification in Cymbidium ensifolium. Plant Syst Evol 2011, 293(1–4):101-110.
  • [11]Hudson ME: Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Resour 2008, 8(1):3-17.
  • [12]Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet 2008, 24(3):133-141.
  • [13]Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008, 26(10):1135-1145.
  • [14]Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S: The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 2010, 17(1):11-22.
  • [15]Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T: Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 2008, 36(19):e122.
  • [16]Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE: Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 2006, 6:17. BioMed Central Full Text
  • [17]Jansen RK, Raubeson LA, Boore JL, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, dePamphilis CW, et al.: Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 2005, 395:348-384.
  • [18]Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK: Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 2005, 59(2):309-322.
  • [19]Palmer JD, Stein DB: Conservation of chloroplast genome structure among vascular plants. Curr Genet 1986, 10(11):823-833.
  • [20]Kim KJ, Lee HL: Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 2004, 11(4):247-261.
  • [21]Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR: Chloroplast DNA variation and plant phylogeny. Ann Mo Bot Gard 1988, 75(4):1180-1206.
  • [22]Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H, Duvall MR, Lin CS: Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 2010, 10:68. BioMed Central Full Text
  • [23]Tian X, Li DZ: Application of DNA sequences in plant phylogenetic study. Acta Bot Yunnanica 2002, 24(2):170-184.
  • [24]Moore MJ, Bell CD, Soltis PS, Soltis DE: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 2007, 104(49):19363-19368.
  • [25]Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, et al.: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 2007, 104(49):19369-19374.
  • [26]Parks M, Cronn R, Liston A: Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 2009, 7:84. BioMed Central Full Text
  • [27]Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 2010, 107(10):4623-4628.
  • [28]Nock CJ, Waters DL, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ: Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 2011, 9(3):328-333.
  • [29]Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssallem IS, Yu J: The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 2010, 5(9):e12762.
  • [30]Sugita M, Sugiura M: Regulation of gene expression in chloroplasts of higher plants. Plant Mol Biol 1996, 32(1–2):315-326.
  • [31]Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK: Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 2007, 8:174. BioMed Central Full Text
  • [32]Gao L, Yi X, Yang YX, Su YJ, Wang T: Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes . BMC Evol Biol 2009, 9:130. BioMed Central Full Text
  • [33]Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, et al.: The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): Comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 2006, 23(2):279-291.
  • [34]Palmer JD, dePamphilis CW: Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 1990, 348(6299):337-339.
  • [35]Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B: Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 2008, 25(2):393-401.
  • [36]Haberhausen G, Zetsche K: Functional loss of all ndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Plant Mol Biol 1994, 24(1):217-222.
  • [37]McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW: Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 2007, 7:57. BioMed Central Full Text
  • [38]Revill MJ, Stanley S, Hibberd JM: Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 2005, 56(419):2477-2486.
  • [39]Cameron KM: Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 2004, 31(3):1157-1180.
  • [40]Cameron KM, Molina MC: Photosystem II gene sequences of psbB and psbC clarify the phylogenetic position of Vanilla (Vanilloideae, Orchidaceae). Cladistics 2006, 22(3):239-248.
  • [41]Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M: Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 1994, 91(21):9794-9798.
  • [42]Wu CS, Lai YT, Lin CP, Wang YN, Chaw SM: Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol 2009, 52(1):115-124.
  • [43]McCoy SR, Kuehl JV, Boore JL, Raubeson LA: The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 2008, 8:130. BioMed Central Full Text
  • [44]Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ: Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 1992, 89(16):7722-7726.
  • [45]Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH: Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 2005, 22(9):1813-1822.
  • [46]Maier RM, Neckermann K, Igloi GL, Kossel H: Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 1995, 251(5):614-628.
  • [47]Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG: Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 2008, 66(6):555-564.
  • [48]Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK: Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 2007, 45(2):547-563.
  • [49]Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK: Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 2010, 70:149-166.
  • [50]Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I: VISTA : visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000, 16(11):1046-1047.
  • [51]Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R: REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 2001, 29(22):4633-4642.
  • [52]Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H: The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 2006, 6:21. BioMed Central Full Text
  • [53]Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL: Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 2007, 115(4):571-590.
  • [54]Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H: The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 2006, 7:61. BioMed Central Full Text
  • [55]Zhang YJ, Ma PF, Li DZ: High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 2011, 6(5):e20596.
  • [56]Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K: Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: A comparative analysis of four monocot chloroplast genomes. DNA Res 2004, 11(2):93-99.
  • [57]Timme RE, Kuehl JV, Boore JL, Jansen RK: A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am J Bot 2007, 94(3):302-312.
  • [58]Cavalier-Smith T: Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 2002, 12(2):R62-R64.
  • [59]Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR: The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 2006, 25(12):1369-1379.
  • [60]Freudenstein JV, van den Berg C, Goldman DH, Kores PJ, Molvray M, Chase MW: An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. Am J Bot 2004, 91(1):149-157.
  • [61]Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science 2008, 322(5898):86-89.
  • [62]Farris JS, Kallersjo M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics 1994, 10(3):315-319.
  • [63]Farris JS, Kallersjo M, Kluge AG, Bult C: Constructing a significance test for incongruence. Syst Biol 1995, 44(4):570-572.
  • [64]Fishbein M, Hibsch-Jetter C, Soltis DE, Hufford L: Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation. Syst Biol 2001, 50(6):817-847.
  • [65]Wortley AH, Rudall PJ, Harris DJ, Scotland RW: How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst Biol 2005, 54(5):697-709.
  • [66]Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L: Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 2011, 54(8):663-673.
  • [67]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al.: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20(2):265-272.
  • [68]Meintjes P, Duran C, Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, et al.: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data . Bioinformatics 2012, 28(12):1647-1649.
  • [69]Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20(17):3252-3255.
  • [70]Cui L, Veeraraghavan N, Richter A, Wall K, Jansen RK, Leebens-Mack J, Leebens-Mack J, Makalowska I, dePamphilis CW: ChloroplastDB: the chloroplast genome database. Nucleic Acids Res 2006, 34:D692-D696.
  • [71]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [72]Lohse M, Drechsel O, Bock R: OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 2007, 52(5–6):267-274.
  • [73]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33(2):511-518.
  • [74]Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods). version 4. Sunderland, Massachusetts: Sinauer Associates; 2002.
  • [75]Wilgenbusch JC, Swofford D: Inferring evolutionary trees with PAUP*. Malden, MA, United States: John Wiley & Sons, Inc.; 2003. [Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al.]] Chapter 6:Unit 6.4
  • [76]Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14(9):817-818.
  • [77]Posada D: Using MODELTEST and PAUP* to select a model of nucleotide substitution. Malden, MA, United States: John Wiley & Sons, Inc.; 2003. [Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al.]] Chapter 6:Unit 6.5
  • [78]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61(3):539-542.
  • [79]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [80]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [81]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  文献评价指标  
  下载次数:49次 浏览次数:18次