期刊论文详细信息
BMC Neuroscience
Differential neuropathic pain sensitivity and expression of spinal mediators in Lewis and Fischer 344 rats
Ulrike Hanesch1  Fernand Anton1  Cathy Fiatte1  Glenn-Marie Le Coz1 
[1] Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, 162a, avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg
关键词: Spinal cord;    Glia cells;    Glutamate transporters;    Chronic constriction injury;    Rat strains;    HPA axis;   
Others  :  1092116
DOI  :  10.1186/1471-2202-15-35
 received in 2013-12-18, accepted in 2014-02-25,  发布年份 2014
PDF
【 摘 要 】

Background

Altered hypothalamo-pituitary-adrenal (HPA) axis activity may be accompanied by a modulation of pain sensitivity. In a model of neuropathic pain (chronic constriction injury, CCI) we investigated the onset and maintenance of mechanical allodynia/hyperalgesia and the expression of biochemical mediators potentially involved in spinal cell modulation in two rat strains displaying either hypo- (Lewis-LEW) or hyper- (Fischer 344-FIS) reactivity of the HPA axis.

Results

Mechanical pain thresholds and plasmatic corticosterone levels were assessed before and during periods of 4 or 21 days following CCI surgery. At the end of the respective protocols, the mRNA expression of glial cell markers (GFAP and Iba1) and glutamate transporters (EAAT3 and EAAT2) were examined. We observed a correlation between the HPA axis reactivity and the pain behavior but not as commonly described in the literature; LEW rats seemed to be less sensitive than FIS from 4 to 14 days after the CCI surgery when looking at the mechanical allodynia/hyperalgesia. However, the biochemical spinal markers expression we observed is conflicting.

Conclusion

We did not find a specific causal relation between the pain behavior and the glial cell activation or the expression of the glutamate transporters, suggesting that the interaction between the HPA axis and the spinal activation pattern is more complex in a context of neuropathic pain.

【 授权许可】

   
2014 Le Coz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128180452207.pdf 1367KB PDF download
Figure 7. 44KB Image download
Figure 6. 196KB Image download
Figure 5. 20KB Image download
Figure 4. 190KB Image download
Figure 3. 43KB Image download
Figure 2. 25KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J: Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008, 70(18):1630-1635.
  • [2]Smith BH, Torrance N: Epidemiology of neuropathic pain and its impact on quality of life. Curr Pain Headache Rep 2012, 16(3):91-98.
  • [3]Griep EN, Boersma JW, Lentjes EG, Prins AP, van der Korst JK, de Kloet ER: Function of the hypothalamic–pituitary–adrenal axis in patients with fibromyalgia and low back pain. J Rheumatol 1998, 25(7):1374-1381.
  • [4]Elwan O, Abdella M, el Bayad AB, Hamdy S: Hormonal changes in headache patients. J Neurol Sci 1991, 106(1):75-81.
  • [5]Strittmatter M, Grauer MT, Fischer C, Hamann G, Hoffmann KH, Blaes F, Schimrigk K: Autonomic nervous system and neuroendocrine changes in patients with idiopathic trigeminal neuralgia. Cephalalgia 1996, 16(7):476-480.
  • [6]Geiss A, Rohleder N, Kirschbaum C, Steinbach K, Bauer HW, Anton F: Predicting the failure of disc surgery by a hypofunctional HPA axis: evidence from a prospective study on patients undergoing disc surgery. Pain 2005, 114(1–2):104-117.
  • [7]Straub RH, Paimela L, Peltomaa R, Schölmerich J, Leirisalo-Repo M: Inadequately low serum levels of steroid hormones in relation to interleukin-6 and tumor necrosis factor in untreated patients with early rheumatoid arthritis and reactive arthritis. Arthritis Rheum 2002, 46(3):654-662.
  • [8]Herman JP, Cullinan WE: Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997, 20(2):78-84.
  • [9]Chrousos GP: Stress, chronic inflammation, and emotional and physical well-being: concurrent effects and chronic sequelae. J Allergy Clin Immunol 2000, 106(5 Suppl):S275-S291.
  • [10]Dhabhar FS, McEwen BS, Spencer RL: Stress response, adrenal steroid receptor levels and corticosteroid-binding globulin levels–a comparison between Sprague–Dawley, Fischer 344 and Lewis rats. Brain Res 1993, 616(1–2):89-98.
  • [11]Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW, Wilder RL: Inflammatory mediator-induced hypothalamic–pituitary–adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA 1989, 86(7):2374-2378.
  • [12]Sternberg EM, Young WS 3rd, Bernardini R, Calogero AE, Chrousos GP, Gold PW, Wilder RL: A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci USA 1989, 86(12):4771-4775.
  • [13]Sternberg EM, Glowa JR, Smith MA, Calogero AE, Listwak SJ, Aksentijevich S, Chrousos GP, Wilder RL, Gold PW: Corticotropin releasing hormone related behavioral and neuroendocrine responses to stress in Lewis and Fischer rats. Brain Res 1992, 570(1–2):54-60.
  • [14]Wei R, Listwak SJ, Sternberg EM: Lewis hypothalamic cells constitutively and upon stimulation express higher levels of mRNA for pro-inflammatory cytokines and related molecules: comparison with inflammatory resistant Fischer rat hypothalamic cells. J Neuroimmunol 2001, 135:10-28.
  • [15]Ezquerra L, Alguacil LF, Nguyen T, Deuel TF, Silos-Santiago I, Herradon G: Different pattern of pleiotrophin and midkine expression in neuropathic pain: correlation between changes in pleiotrophin gene expression and rat strain differences in neuropathic pain. Growth Factors 2008, 26(1):44-48.
  • [16]Fecho K, Valtschanoff JG: Acute inflammatory and neuropathic pain in Lewis and Fischer rats. J Neuroendocrinol 2006, 18(7):504-513.
  • [17]Gao X, Zhang Y, Wu G: Effects of dopaminergic agents on carrageenan hyperalgesia after intrathecal administration to rats. Eur J Pharmacol 2001, 418(1–2):73-77.
  • [18]Millan MJ: Descending control of pain. Prog Neurobiol 2002, 66(6):355-474.
  • [19]Fundytus ME: Glutamate receptors and nociception: implications for the drug treatment of pain. CNS Drugs 2001, 15(1):29-58.
  • [20]Woolf CJ: Evidence for a central component of post-injury pain hypersensitivity. Nature 1983, 306(5944):686-688.
  • [21]Liaw WJ, Stephens RL Jr, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao YX: Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005, 115(1–2):60-70.
  • [22]Lievens JC, Bernal F, Forni C, Mahy N, Kerkerian-Le Goff L: Characterization of striatal lesions produced by glutamate uptake alteration: cell death, reactive gliosis, and changes in GLT-1 and GADD45 mRNA expression. Glia 2000, 29(3):222-232.
  • [23]Mennerick S, Shen W, Xu W, Benz A, Tanaka K, Shimamoto K, Isenberg KE, Krause JE, Zorumski CF: Substrate turnover by transporters cur- tails synaptic glutamate transients. J Neurosci 1999, 19(21):9242-9251.
  • [24]Sung B, Lim G, Mao J: Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003, 23(7):2899-2910.
  • [25]Trotti D, Aoki M, Pasinelli P, Berger UV, Danbolt NC, Brown RH Jr, Hediger MA: Amyotrophic lateral sclerosis-linked glutamate transporter mutation has impaired glutamate clearance capacity. J Biol Chem 2001, 276(1):576-582.
  • [26]Wang S, Lim G, Yang L, Sung B, Mao J: Downregulation of spinal glutamate transporter EAAC1 following nerve injury is regulated by central glucocorticoid receptors in rats. Pain 2006, 120(1–2):78-85.
  • [27]Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR: Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115(1–2):71-83.
  • [28]Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR: Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003, 23(3):1026-1040.
  • [29]Tanga FY, Raghavendra V, DeLeo JA: Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int 2004, 45(2–3):397-407.
  • [30]Garrison CJ, Dougherty PM, Kajander KC, Carlton SM: Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res 1991, 565(1):1-7.
  • [31]Coyle DE: Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 1998, 23(1):75-83.
  • [32]Garrison CJ, Dougherty PM, Carlton SM: GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol 1994, 129(2):237-243.
  • [33]Sweitzer SM, Schubert P, DeLeo JA: Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 2001, 297(3):1210-1217.
  • [34]Suter MR, Wen YR, Decosterd I, Ji RR: Do glial cells control pain? Neuron Glia Biol 2007, 3(3):255-268.
  • [35]Guo J, Jia D, Jin B, Xu F, Yuan X, Shen H: Effects of glial cell line-derived neurotrophic factor intrathecal injection on spinal dorsal horn glial fibrillary acidic protein expression in a rat model of neuropathic pain. Int J Neurosci 2012, 122(7):388-394.
  • [36]Gao YJ, Ji RR: Targeting astrocytes for chronic pain. Neurotherapeutics 2010, 7(4):482-493.
  • [37]Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19(8):312-318.
  • [38]Ye ZC, Sontheimer H: Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 1996, 7(13):2181-2185.
  • [39]Pickering M, Cumiskey D, O’Connor JJ: Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 2005, 90(5):663-670.
  • [40]Prow NA, Irani DN: The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 2008, 105(4):1276-1286.
  • [41]Carmen J, Rothstein JD, Kerr DA: Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res 2009, 1263:143-154.
  • [42]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53(1):55-63.
  • [43]Hoheisel U, Kaske A, Mense S: Relationship between neuronal activity and substance P-immunoreactivity in the rat spinal cord during acute and persistent myositis. Neurosci Lett 1998, 257(1):21-24.
  • [44]Pfaffl MW: A new mathematical model for relative quantification in real- time RT-PCR. Nucleic Acids Res 2001, 29(9):E45.
  • [45]Juif PE, Anton F, Hanesch U: Pain behavior and spinal cell activation due to carrageenan-induced inflammation in two inbred rat strains with differential hypothalamic-pituitary-adrenal axis reactivity. Physiol Behav 2012, 105(4):901-908.
  • [46]Fecho K, Nackley AG, Wu Y, Maixner W: Basal and carrageenan-induced pain behavior in Sprague–Dawley. Lewis and Fischer rats. Physiol Behav 2005, 85(2):177-186.
  • [47]Lovell JA, Stuesse SL, Cruce WL, Crisp T: Strain differences in neuropathic hyperalgesia. Pharmacol Biochem Behav 2000, 65(1):141-144.
  • [48]Herradon G, Ezquerra L, Nguyen T, Wang C, Siso A, Franklin B, Dilorenzo L, Rossenfeld J, Alguacil LF, Silos-Santiago I: Changes in BDNF gene expression correlate with rat strain differences in neuropathic pain. Neurosci Lett 2007, 420(3):273-276.
  • [49]Zhang RX, Lao L, Qiao JT, Ruda MA: Strain differences in pain sensitivity and expression of preprodynorphin mRNA in rats following peripheral inflammation. Neurosci Lett 2003, 353(3):213-216.
  • [50]Lariviere WR, Sattar MA, Melzack R: Inflammation-susceptible Lewis rats show less sensitivity than resistant Fischer rats in the formalin inflammatory pain test and with repeated thermal testing. J Neurophysiol 2006, 95(5):2889-2897.
  • [51]Griffin AC, Whitacre CC: Sex and strain differences in the circadian rhythm fluctuation of endocrine and immune function in the rat: implications for rodent models of autoimmune disease. J Neuroimmunol 1991, 35(1–3):53-64.
  • [52]Ortiz J, DeCaprio JL, Kosten TA, Nestler EJ: Strain-selective effects of corticosterone on locomotor sensitization to cocaine and on levels of tyrosine hydroxylase and glucocorticoid receptor in the ventral tegmental area. Neuroscience 1995, 67(2):383-397.
  • [53]Raghavendra V, Tanga F, Deleo JA: Inhibition of microglial activation attenuates the development but Not existing hypersensitivity in a Rat model of neuropathy. J Pharmacol Exp Ther 2003, 306(2):624-630.
  • [54]Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10(11):1361-1368.
  • [55]Cao H, Zhang YQ: Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 2008, 32(5):972-983.
  • [56]Milligan ED, Watkins LR: Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 2009, 10(1):23-36.
  • [57]Mistry S, Paule CC, Varga A, Photiou A, Jenes A, Avelino A, Buluwela L, Nagy I: Prolonged exposure to bradykinin and prostaglandin E2 increases TRPV1 mRNA but does not alter TRPV1 and TRPV1b protein expression in cultured rat primary sensory neurons. Neurosci Lett 2014. in press. http://dx.doi.org/10.1016/j.neulet.2014.02.006 webcite
  • [58]Romero-Sandoval A, Chai N, Nutile-McMenemy N, DeLeo JA: A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res 2008, 1219:116-126.
  • [59]Romero-Sandoval A, Nutile-McMenemy N, DeLeo JA: Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury. Anesthesiology 2008, 108(4):722-734.
  • [60]Romero-Sandoval EA, Horvath RJ, DeLeo JA: Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 2008, 9(7):726-734.
  • [61]Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424(6950):778-783.
  • [62]Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438(7070):1017-1021.
  • [63]Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M: Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 2007, 11(2):223-230.
  • [64]Svensson M, Eriksson P, Persson JK, Molander C, Arvidsson J, Aldskogius H: The response of central glia to peripheral nerve injury. Brain Res Bull 1993, 30(3–4):499-506.
  • [65]Popovich PG, Wei P, Stokes BT: Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. J Comp Neurol 1997, 377(3):443-464.
  • [66]Hald A: Spinal astrogliosis in pain models: cause and effects. Cell Mol Neurobiol 2009, 29(5):609-619.
  • [67]Kawasaki Y, Zhang L, Cheng JK, Ji RR: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1 interleukin-6, and tumor necrosis factor in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28(20):5189-5194.
  • [68]Tsuda M, Inoue K, Salter MW: Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 2005, 28(2):101-107.
  • [69]Graeber MB, Streit WJ, Kreutzberg GW: Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res 1989, 22(1):103-106.
  • [70]Droste A, Sorg C, Hogger P: Shedding of CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteine-rich family. Biochem Biophys Res Commun 1999, 256(1):110-113.
  • [71]Zwadlo G, Voegeli R, Schulze Osthoff K, Sorg C: A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the downregulatory phase of the inflammatory process. Exp Cell Biol 1987, 55(6):295-304.
  • [72]Wen YR, Suter MR, Kawasaki Y, Huang J, Pertin M, Kohno T, Berde CB, Decosterd I, Ji RR: Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 2007, 107(2):312-321.
  • [73]Li H, Xie W, Strong JA, Zhang J-M: Systemic anti-inflammatory corticosteroid reduces mechanical pain behaviour, sympathetic sprouting, and elevation of pro-inflammatory cytokines in a rat model of neuropathic pain. Anesthesiology 2007, 107(3):489-477.
  • [74]Weng HR, Chen JH, Cata JP: Inhibition of glutamate uptake in the spinal cord induces hyperalgesia and increased responses of spinal dorsal horn neurons to peripheral afferent stimulation. Neuroscience 2006, 138(4):1351-1360.
  • [75]Romero-Sandoval A, Eisenach JC: Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. Anesthesiology 2007, 106(4):787-794.
  • [76]Brodkin ES, Carlezon WA Jr, Haile CN, Kosten TA, Heninger GR, Nestler EJ: Genetic analysis of behavioral, neuroendocrine, and biochemical parameters in inbred rodents: initial studies in Lewis and Fischer 344 rats and in A/J and C57BL/6J mice. Brain Res 1998, 805(1–2):55-68.
  • [77]Baudrie V, Laude D, Chaouloff F, Elghozi JL: Genetic influences on cardiovascular responses to an acoustic startle stimulus in rats. Clin Exp Pharmacol Physiol 2001, 28(12):1096-1099.
  • [78]Rex A, Sondern U, Voigt JP, Franck S, Fink H: Strain differences in fear-motivated behavior of rats. Pharmacol Biochem Behav 1996, 54(1):107-111.
  • [79]Linnman C, Becerra L, Borsook D: Inflamming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. J Neuroimmune Pharmacol 2013, 8(3):547-563.
  • [80]Rouwette T, Vanelderen P, Roubos EW, Kozicz T, Vissers K: The amygdala, a relay station for switching on and off pain. Eur J Pain 2012, 16(6):782-792.
  文献评价指标  
  下载次数:23次 浏览次数:11次