期刊论文详细信息
BMC Systems Biology
Computational prediction of the human-microbial oral interactome
José Luís Oliveira1  Marlene Barros2  Maria José Correia3  Nuno Rosa3  Carlos Pereira5  Sérgio Matos1  Joel P Arrais4  Edgar D Coelho1 
[1] Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal;Centre for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal;Department of Health Sciences, Institute of Health Sciences, The Catholic University of Portugal, Viseu, Portugal;Centre for Informatics and Systems of the University at Coimbra (CISUC), University of Coimbra, Coimbra, Portugal;Department of Informatics Engineering and Systems, Polytechnic Institute of Coimbra, Engineering Institute of Coimbra (IPC-ISEC), Coimbra, Portugal
关键词: Bayesian classification;    Oral interactome;    Protein-protein interactions;   
Others  :  1141337
DOI  :  10.1186/1752-0509-8-24
 received in 2013-08-27, accepted in 2014-02-17,  发布年份 2014
PDF
【 摘 要 】

Background

The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein interactions (PPIs) between the host and microorganisms. Nevertheless, this kind of PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method that allows us to obtain a first model of the Human-Microbial oral interactome.

Results

We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were merged and used for training and validation of a naïve Bayes classifier. For the final prediction model, we used an ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the prediction model, the classified result was filtered for very high confidence PPIs (probability ≥ 1-10−7), leading to a set of 46,579 PPIs to be further explored.

Conclusions

We believe this dataset holds not only important pathways involved in the onset of infectious oral diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint webcite.

【 授权许可】

   
2014 Coelho et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327024126947.pdf 3178KB PDF download
Figure 4. 53KB Image download
Figure 3. 285KB Image download
20140707044711729.pdf 254KB PDF download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Phizicky EM, Fields S: Protein-protein interactions: methods for detection and analysis. Microbiol Rev 1995, 59:94-123.
  • [2]Dyer MD, Murali TM, Sobral BW: Computational prediction of host-pathogen protein–protein interactions. Bioinformatics 2007, 23:i159-i166.
  • [3]Littler SJ, Hubbard SJ: Conservation of orientation and sequence in protein domain–domain interactions. J Mol Biol 2005, 345:1265-1279.
  • [4]Valdar WS, Thornton JM: Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins 2001, 42:108-124.
  • [5]Aloy P, Ceulemans H, Stark A, Russell RB: The relationship between sequence and interaction divergence in proteins. J Mol Biol 2003, 332:989-998.
  • [6]Teichmann SA: The constraints protein-protein interactions place on sequence divergence. J Mol Biol 2002, 324:399-407.
  • [7]Panchenko AR, Wolf YI, Panchenko LA, Madej T: Evolutionary plasticity of protein families: coupling between sequence and structure variation. Proteins 2005, 61:535-544.
  • [8]Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, et al.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437:1173-1178.
  • [9]Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
  • [10]Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences 2001, 98:4569-4574.
  • [11]Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B: A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999, 17:1030-1032.
  • [12]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95:14863-14868.
  • [13]MacBeath G, Schreiber SL: Printing proteins as microarrays for high-throughput function determination. Science 2000, 289:1760-1763.
  • [14]Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M: Global analysis of protein activities using proteome chips. Science 2001, 293:2101-2105.
  • [15]Jones RB, Gordus A, Krall JA, MacBeath G: A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006, 439:168-174.
  • [16]Ye P, Peyser BD, Pan X, Boeke JD, Spencer FA, Bader JS: Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol 2005, 1(2005):0026.
  • [17]Smith GP: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228:1315-1317.
  • [18]Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CWV, Bussey H, Andrews B, Tyers M, Boone C: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001, 294:2364-2368.
  • [19]Yan Y, Marriott G: Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol 2003, 7:635-640.
  • [20]Cooper MA: Label-free screening of bio-molecular interactions. Anal Bioanal Chem 2003, 377:834-842.
  • [21]Yang Y, Wang H, Erie DA: Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods 2003, 29:175-187.
  • [22]Baumeister W, Grimm R, Walz J: Electron tomography of molecules and cells. Trends Cell Biol 1999, 9:81-85.
  • [23]Xia JF, Wang SL, Lei YK: Computational methods for the prediction of protein-protein interactions. Protein Pept Lett 2010, 17:1069-1078.
  • [24]Jaeger S, Gaudan S, Leser U, Rebholz-Schuhmann D: Integrating protein-protein interactions and text mining for protein function prediction. BMC Bioinformatics 2008, 9(Suppl 8):S2. BioMed Central Full Text
  • [25]Tamames J, Casari G, Ouzounis C, Valencia A: Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 1997, 44:66-73.
  • [26]Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 1998, 23:324-328.
  • [27]Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 1999, 96:2896-2901.
  • [28]Blumenthal T: Gene clusters and polycistronic transcription in eukaryotes. Bioessays 1998, 20:480-487.
  • [29]Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA: Protein interaction maps for complete genomes based on gene fusion events. Nature 1999, 402:86-90.
  • [30]Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D: Detecting protein function and protein-protein interactions from genome sequences. Science 1999, 285:751-753.
  • [31]Ouzounis C, Kyrpides N: The emergence of major cellular processes in evolution. FEBS Lett 1996, 390:119-123.
  • [32]Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999, 96:4285-4288.
  • [33]Barker D, Pagel M: Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS Comput Biol 2005, 1:e3.
  • [34]Najafabadi HS, Salavati R: Sequence-based prediction of protein-protein interactions by means of codon usage. Genome Biol 2008, 9:R87. BioMed Central Full Text
  • [35]Aloy P, Russell RB: Interrogating protein interaction networks through structural biology. Proc Natl Acad Sci 2002, 99:5896-5901.
  • [36]Lu L, Lu H, Skolnick J: MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 2002, 49:350-364.
  • [37]Sprinzak E, Margalit H: Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 2001, 311:681-692.
  • [38]Deng M, Mehta S, Sun F, Chen T: Inferring domain-domain interactions from protein-protein interactions. Genome Res 2002, 12:1540-1548.
  • [39]Chen L, Wu LY, Wang Y, Zhang XS: Inferring protein interactions from experimental data by association probabilistic method. Proteins 2006, 62:833-837.
  • [40]Morrison JL, Breitling R, Higham DJ, Gilbert DR: A lock-and-key model for protein-protein interactions. Bioinformatics 2006, 22:2012-2019.
  • [41]Huang C, Morcos F, Kanaan SP, Wuchty S, Chen DZ, Izaguirre JA: Predicting protein-protein interactions from protein domains using a set cover approach. IEEE/ACM Trans Comput Biol Bioinform 2007, 4:78-87.
  • [42]Chen X-W, Liu M: Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 2005, 21:4394-4400.
  • [43]Wang R-S, Wang Y, Wu L-Y, Zhang X-S, Chen L: Analysis on multi-domain cooperation for predicting protein-protein interactions. BMC Bioinformatics 2007, 8:391. BioMed Central Full Text
  • [44]Bock JR, Gough DA: Predicting protein–protein interactions from primary structure. Bioinformatics 2001, 17:455-460.
  • [45]Bock JR, Gough DA: Whole-proteome interaction mining. Bioinformatics 2003, 19:125-134.
  • [46]Martin S, Roe D, Faulon J-L: Predicting protein–protein interactions using signature products. Bioinformatics 2005, 21:218-226.
  • [47]Ben-Hur A, Noble WS: Kernel methods for predicting protein–protein interactions. Bioinformatics 2005, 21:38-46.
  • [48]Pitre S, Dehne F, Chan A, Cheetham J, Duong A, Emili A, Gebbia M, Greenblatt J, Jessulat M, Krogan N, Luo X, Golshani A: PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs. BMC Bioinformatics 2006, 7:365. BioMed Central Full Text
  • [49]Nanni L, Lumini A: An ensemble of K-local hyperplanes for predicting protein–protein interactions. Bioinformatics 2006, 22:1207-1210.
  • [50]Nanni L: Hyperplanes for predicting protein–protein interactions. Neurocomputing 2005, 69:257-263.
  • [51]Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H: Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci 2007, 104:4337-4341.
  • [52]Guo Y, Yu L, Wen Z, Li M: Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences. Nucleic Acids Res 2008, 36:3025-3030.
  • [53]Xia JF, Han K, Huang DS: Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept Lett 2010, 17:137-145.
  • [54]Rajasekaran S, Merlin JC, Kundeti V, Mi T, Oommen A, Vyas J, Alaniz I, Chung K, Chowdhury F, Deverasatty S, Irvey TM, Lacambacal D, Lara D, Panchangam S, Rathnayake V, Watts P, Schiller MR: A computational tool for identifying minimotifs in protein-protein interactions and improving the accuracy of minimotif predictions. Proteins 2011, 79:153-164.
  • [55]Knisley D, Knisley J: Predicting protein–protein interactions using graph invariants and a neural network. Comput Biol Chem 2011, 35:108-113.
  • [56]Zhang Y, Zhang D, Mi G, Ma D, Li G, Guo Y, Li M, Zhu M: Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions. Comput Biol Chem 2012, 36:36-41.
  • [57]Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, et al.: The gene ontology (GO) database and informatics resource. Nucleic Acids Res 2004, 32:D258-D261.
  • [58]Jain S, Bader GD: An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology. BMC Bioinformatics 2010, 11:562. BioMed Central Full Text
  • [59]Maetschke SR, Simonsen M, Davis MJ, Ragan MA: Gene Ontology-driven inference of protein–protein interactions using inducers. Bioinformatics 2012, 28:69-75.
  • [60]Park B, Cui G, Lee H, Huang D-S, Han K: PPISearchEngine: gene ontology-based search for protein–protein interactions. Comput Methods Biomech Biomed Engin 2012, 16:1-8.
  • [61]Wu X, Zhu L, Guo J, Zhang DY, Lin K: Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res 2006, 34:2137-2150.
  • [62]Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A: Host pathogen protein interactions predicted by comparative modeling. Protein Sci 2007, 16:2585-2596.
  • [63]Tastan O, Qi Y, Carbonell JG, Klein-Seetharaman J: Prediction of interactions between HIV-1 and human proteins by information integration. Pac Symp Biocomput 2009, 516-527.
  • [64]Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411:41-42.
  • [65]Wuchty S, Almaas E: Peeling the yeast protein network. Proteomics 2005, 5:444-449.
  • [66]Arrais JP, Rosa N, Melo J, Coelho ED, Amaral D, Correia MJ, Barros M, Oliveira JL: OralCard: a bioinformatic tool for the study of oral proteome. Arch Oral Biol 2013, 58(7):762-772.
  • [67]Rosa N, Correia MJ, Arrais JP, Lopes P, Melo J, Oliveira JL, Barros M: From the salivary proteome to the OralOme: comprehensive molecular oral biology. Arch Oral Biol 2012, 57(7):853-864.
  • [68]Vecchiola C, Pandey S, Buyya R: High-performance cloud computing: a view of scientific applications. 2009, 4-16. Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms and Networks I-SPAN 2009, IEEE Computer Society
  • [69]Yamane K, Nambu T, Yamanaka T, Mashimo C, Sugimori C, Leung K-P, Fukushima H: Complete genome sequence of rothia mucilaginosa DY-18: a clinical isolate with dense meshwork-like structures from a persistent apical periodontitis lesion. Sequencing 2010, 2010:1-6.
  • [70]Batty I: Actinomyces odontolyticus, a new species of actinomycete regularly isolated from deep carious dentine. J Pathol Bacteriol 1958, 75:455-459.
  • [71]McKay LI, Cidlowski JA: Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways. Endocrine Rev 1999, 20:435-459.
  • [72]McDevitt H, Munson S, Ettinger R, Wu A: Multiple roles for tumor necrosis factor-alpha and lymphotoxin alpha/beta in immunity and autoimmunity. Arthritis Res 2002, 4:S141-S152. BioMed Central Full Text
  • [73]Barnard JA, Beauchamp RD, Russell WE, Dubois RN, Coffey RJ: Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterology 1995, 108:564-580.
  • [74]Galan JE, Pace J, Hayman MJ: Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature 1992, 357:588-589.
  • [75]Zhu W, Phan QT, Boontheung P, Solis NV, Loo JA, Filler SG: EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A 2012, 109:14194-14199.
  • [76]Strong JE, Tang D, Lee PW: Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 1993, 197:405-411.
  • [77]Eppstein DA, Vivienne Marsh Y, Schreiber AB, Newman SR, Todaro GJ, Nestor JJ Jr: Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature 1985, 318:663-665.
  • [78]Buret A, Gall DG, Olson ME, Hardin JA: The role of the epidermal growth factor receptor in microbial infections of the gastrointestinal tract. Microbes Infect 1999, 1:1139-1144.
  • [79]Llena-Puy MC, Montanana-Llorens C, Forner-Navarro L: Fibronectin levels in stimulated whole-saliva and their relationship with cariogenic oral bacteria. Int Dent J 2000, 50:57-59.
  • [80]Henderson B, Nair S, Pallas J, Williams MA: Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011, 35:147-200.
  • [81]Min K-W, Hwang J-W, Lee J-S, Park Y, T-a T, Yoon J-B: TIP120A associates with cullins and modulates ubiquitin ligase activity. J. Biol. Chem 2003, 278:15905-15910.
  • [82]Sarikas A, Hartmann T, Pan ZQ: The cullin protein family. Genome Biol 2011, 12:220. BioMed Central Full Text
  • [83]Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim E-H, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H: CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 2002, 10:1519-1526.
  • [84]Munro P, Flatau G, Lemichez E: Bacteria and the ubiquitin pathway. Curr Opin Microbiol 2007, 10:39-46.
  • [85]Curtis H, Dirk G, Rob K, Sahar A, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, Giglio MG, Kymberlie H-P, Lobos EA, Ramana M, Vincent M, Martin JC, Makedonka M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, Worley KC, Wortman JR, Young SK, Qiandong Z, Aagaard KM, Abolude OO, Emma A-V, Alm EJ, Lucia A, et al.: Structure, function and diversity of the healthy human microbiome. Nature 2012, 486:207-214.
  • [86]Avila-Campos MJ, Velasquez-Melendez G: Prevalence of putative periodontopathogens from periodontal patients and healthy subjects in Sao Paulo, SP, Brazil. Rev Inst Med Trop Sao Paulo 2002, 44:1-5.
  • [87]Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK: Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 2007, 51:526-534.
  • [88]Levy ED, Pereira-Leal JB: Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol 2008, 18:349-357.
  • [89]Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34:D535-539.
  • [90]Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The database of interacting proteins: 2004 update. Nucleic Acids Res 2004, 32:D449-D451.
  • [91]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human protein reference database–2009 update. Nucleic Acids Res 2009, 37:D767-772.
  • [92]Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H: The IntAct molecular interaction database in 2012. Nucleic Acids Res 2012, 40:D841-D846.
  • [93]Chatr-aryamontri A, Ceol A, Montecchi Palazzi L, Nardelli G, Schneider MV, Castagnoli L, Cesareni G: MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 2012, 40:D857-861.
  • [94]Consortium TU: Reorganizing the protein space at the Universal protein resource (UniProt). Nucleic Acids Res 2012, 40:D71-D75.
  • [95]Ben-Hur A, Noble WS: Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 2006, 7(Suppl 1):S2. BioMed Central Full Text
  • [96]van Haagen HHHBM, Hoen PAC't, Botelho Bovo A, de Morrée A, van Mulligen EM, Chichester C, Kors JA, den Dunnen JT, van Ommen G-JB, van der Maarel SM, Medina Kern V, Mons B, Schuemie MJ: Novel protein-protein interactions inferred from literature context. PLoS One 2009, 4:e7894.
  • [97]Jelier R, Schuemie MJ, Roes PJ, van Mulligen EM, Kors JA: Literature-based concept profiles for gene annotation: the issue of weighting. Int J Med Inform 2008, 77:354-362.
  • [98]Campos D, Matos S, Oliveira J: Gimli: open source and high-performance biomedical name recognition. BMC Bioinformatics 2013, 14:54. BioMed Central Full Text
  • [99]Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278:631-637.
  • [100]Lee S-A, C-h C, Tsai C-H, Lai J-M, Wang F-S, Kao C-Y, Huang C-YF: Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics 2008, 9(Suppl 12):S11. BioMed Central Full Text
  • [101]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39:D561-568.
  • [102]Lin N, Wu B, Jansen R, Gerstein M, Zhao H: Information assessment on predicting protein-protein interactions. BMC Bioinformatics 2004, 5:154. BioMed Central Full Text
  • [103]Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS, Fields S: Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 2005, 102:12123-12128.
  • [104]Patil A, Nakamura H: Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics 2005, 6:100. BioMed Central Full Text
  • [105]Qi Y, Bar-Joseph Z, Klein-Seetharaman J: Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 2006, 63:490-500.
  • [106]Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R: DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res 2011, 39:D730-D735.
  • [107]Duda R, Hart P: Pattern Classification and Scene Analysis. New York: John Wiley & Sons Inc; 1973.
  • [108]Friedman N, Geiger D, Goldszmidt M: Bayesian Network Classifiers. Mach Learn 1997, 29:131-163.
  • [109]Swets JA: Measuring the accuracy of diagnostic systems. Science 1988, 240:1285-1293.
  • [110]Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143:29-36.
  文献评价指标  
  下载次数:16次 浏览次数:2次