期刊论文详细信息
BMC Microbiology
The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro
Tom Van de Wiele1  Willy Verstraete1  Hermie J Harmsen5  Tom Hennebel1  Jan Pieters4  Marc Bracke6  Lara Derycke2  Pieter Van den Abbeele1  Sam Possemiers3  Iris Pinheiro3  Mehdi Sadaghian Sadabad5  Tine De Ryck6  Barbara Vanhoecke6  Massimo Marzorati1 
[1] Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium;Upper Airways Research Laboratory, Ghent University, Medical Research Building O, De Pintelaan 185, B-9000 Gent, Belgium;ProDigest, Technologiepark 3, 9052 Gent, Belgium;Department of Biosystems Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium;Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;Laboratory of Experimental Cancer Research, Ghent University, 1P7, De Pintelaan 185, B-9000 Gent, Belgium
关键词: SHIME®;    Shear stress;    Enterocytes;    Bacterial adhesion;   
Others  :  1141031
DOI  :  10.1186/1471-2180-14-133
 received in 2013-06-05, accepted in 2014-04-24,  发布年份 2014
PDF
【 摘 要 】

Background

Recent scientific developments have shed more light on the importance of the host-microbe interaction, particularly in the gut. However, the mechanistic study of the host-microbe interplay is complicated by the intrinsic limitations in reaching the different areas of the gastrointestinal tract (GIT) in vivo. In this paper, we present the technical validation of a new device - the Host-Microbiota Interaction (HMI) module - and the evidence that it can be used in combination with a gut dynamic simulator to evaluate the effect of a specific treatment at the level of the luminal microbial community and of the host surface colonization and signaling.

Results

The HMI module recreates conditions that are physiologically relevant for the GIT: i) a mucosal area to which bacteria can adhere under relevant shear stress (3 dynes cm−2); ii) the bilateral transport of low molecular weight metabolites (4 to 150 kDa) with permeation coefficients ranging from 2.4 × 10−6 to 7.1 × 10−9 cm sec−1; and iii) microaerophilic conditions at the bottom of the growing biofilm (PmO2 = 2.5 × 10−4 cm sec−1). In a long-term study, the host’s cells in the HMI module were still viable after a 48-hour exposure to a complex microbial community. The dominant mucus-associated microbiota differed from the luminal one and its composition was influenced by the treatment with a dried product derived from yeast fermentation. The latter - with known anti-inflammatory properties - induced a decrease of pro-inflammatory IL-8 production between 24 and 48 h.

Conclusions

The study of the in vivo functionality of adhering bacterial communities in the human GIT and of the localized effect on the host is frequently hindered by the complexity of reaching particular areas of the GIT. The HMI module offers the possibility of co-culturing a gut representative microbial community with enterocyte-like cells up to 48 h and may therefore contribute to the mechanistic understanding of host-microbiome interactions.

【 授权许可】

   
2014 Marzorati et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325194200550.pdf 2002KB PDF download
Figure 7. 56KB Image download
Figure 6. 73KB Image download
Figure 5. 74KB Image download
Figure 4. 33KB Image download
Figure 3. 37KB Image download
Figure 2. 47KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
  • [2]Lebeer S, Vanderleyden J, de Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2008, 72:728-764.
  • [3]Manning TS, Gibson GR: Microbial-gut interactions in health and disease: prebiotics. Best Pract Res Clin Gastroenterol 2004, 18:287-298.
  • [4]O’Hara AM, Shanahan F: The gut flora as a forgotten organ. EMBO Rep 2006, 7:688-693.
  • [5]Blaser MJ, Kirschner D: The equilibria that allow bacterial persistence in human hosts. Nature 2007, 449:843-849.
  • [6]van den Abbeele P, van de Wiele T, Verstraete W, Possemiers S: The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 2011, 35:681-704.
  • [7]Li XJ, Yue LY, Guan XF, Qiao SY: The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microb 2008, 104:1082-1091.
  • [8]Macfarlane S: Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 2008, 42(Suppl 3):S142-S143.
  • [9]Macfarlane S, Dillon JF: Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 2007, 102:1187-1196.
  • [10]Marzorati M, van den Abbeele P, Possemiers S, Benner J, Verstraete W, van de Wiele T: Studying the host-microbiota interaction in the human gastrointestinal tract: basic concepts and in vitro approaches. Ann Microbiol 2011, 61:709-715.
  • [11]Molly K, Vande Woestyne M, de Smet J, Verstraete W: Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 1994, 7:191-200.
  • [12]Minekus M, Smeets-Peeters MJE, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis in ’t Veld JHJ: A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microb Biotech 1999, 53:108-114.
  • [13]Macfarlane GT, Macfarlane S: Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 2005, 18:156-162.
  • [14]Venema K, van den Abbeele P: Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 2013, 27:115-126.
  • [15]Marzorati M, Possemiers S, Verstraete W: The use of the SHIME-related technology platform to assess the efficacy of pre- and probiotics. Agro Food Ind Hi-Tech 2009, 20:S50-S55.
  • [16]Yoo MJY, Chen XD: GIT physicochemical modeling - a critical review. Int J Food Eng 2006, 2(art):4.
  • [17]Cinquin C, le Blay G, Fliss I, Lacroix C: Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 2004, 48:128-138.
  • [18]Cinquin C, le Blay G, Fliss I, Lacroix C: New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol Ecol 2006, 57:324-336.
  • [19]Probert HM, Gibson GR: Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol 2002, 3:23-27.
  • [20]Macfarlane S, Woodmansey EJ, Macfarlane GT: Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol 2005, 71:7483-7492.
  • [21]van den Abbeele P, Roos S, Eeckhaut V, Marzorati M, Possemiers S, Vanhoecke B, Verstraete W, van Immerseel F, van de Wiele T: Incorporation of a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microbial Biotech 2012, 5:106-115.
  • [22]Nollevaux G, Devillé C, el Moualij B, Zorzi W, Deloyer P, Schneider YJ, Peulen O, Dandrifosse G: Development of a serumfree co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5 M21). BMC Cell Biol 2006, 7:20.
  • [23]Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C: Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol 2004, 60:477-485.
  • [24]Höner zu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez K, Wilson JV, Richter EG, Goodwin TJ, Alexander JS, Pierson DL, Pellis N, Buchanan KL, Nickerson CA: Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect 2006, 8:1813-1825.
  • [25]Kim HJ, Huh D, Hamilton G, Ingber DE: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012, 12:2165-2174.
  • [26]Jensen GS, Redman KA, Benson KF, Carter SG, Mitzner MA, Reeves S, Robinson L: Antioxidant bioavailability and rapid immune-modulating effects after consumption of a single acute dose of a high-metabolite yeast immunogen: results of a placebo-controlled double-blinded crossover pilot study. J Med Food 2011, 14:1002-1010.
  • [27]Moyad MA, Robinson LE, Kittelsrud JM, Reeves SG, Weaver SE, Guzman AI, Bubak ME: Immunogenic yeast-based fermentation product reduces allergic rhinitis-induced nasal congestion: a randomized, double-blind, placebo-controlled trial. Adv Ther 2009, 26:795-804.
  • [28]Moyad MA, Robinson LE, Zawada ET, Kittelsrud J, Chen DG, Reeves SG, Weaver S: Immunogenic yeast-based fermentate for cold/Flu-like symptoms in nonvaccinated individuals. J Altern Complement Med 2010, 16:213-218.
  • [29]Possemiers S, Verhelst A, Maignien L, van den Abbeele P, Reeves SG, Robinson LE, Raas T, Pluvinage P, Schneider Y, van de Wiele T, Marzorati M: A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota, enhances butyrate production and protects against inflammation, as studied in an intergrated in vitro approach. 2013, Agric. Food Chem 2013, 61:9380-9392.
  • [30]Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner zu Bentrup K, Hammond T, Pierson DL: Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 2003, 54:1-11.
  • [31]Nilsson LM, Thomas WE, Sokurenko EV, Vogel V: Elevated shear stress protects Escherichia coli cells adhering to surfaces via catch bonds from detachment by soluble inhibitors. Appl Environ Microbiol 2006, 72:3005-3010.
  • [32]Lebeer S, Verhoeven TL, Perea Vélez M, Vanderleyden J, de Keersmaecker SC: Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 2007, 73:6768-6775.
  • [33]Avvisato CL, Yang X, Shah S, Hoxter B, Li W, Gaynor R, Pestell R, Tozeren A, Byers SW: Mechanical force modulates global gene expression and beta-catenin signaling in colon cancer cells. J Cell Sci 2007, 120:2672-2682.
  • [34]Nauman EA, Ott CM, Sander E, Tucker DL, Pierson D, Wilson JW, Nickerson CA: Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl Environ Microbiol 2007, 73:699-705.
  • [35]Guo P, Weinstein AM, Weinbaum S: A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol 2000, 279:F698-F712.
  • [36]Desai MA, Mutlu M, Vadgama P: A study of macromolecular diffusion through native porcine mucus. Experientia 1992, 48:22-26.
  • [37]Mols R, Brouwers J, Schinkel AH, Annaert P, Augustijns P: Intestinal perfusion with mesenteric blood sampling in wild-type and knockout mice: evaluation of a novel tool in biopharmaceutical drug profiling. Drug Metab Dispos 2009, 37:1334-1337.
  • [38]Zhao Q, Zhou C, Wei H, He Y, Chai X, Ren Q: Ex vivo determination of glucose permeability and optical attenuation coefficient in normal and adenomatous human colon tissues using spectral domain optical coherence tomography. J Biomed Opt 2012, 17:105004.
  • [39]Behrens I, Stenberg P, Artursson P, Kissel T: Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharm Res 2001, 18:1138-1145.
  • [40]Saldeña TA, Saraví FD, Hwang HJ, Cincunegui LM, Carra GE: Oxygen diffusive barriers of rat distal colon: role of subepithelial tissue, mucosa, and mucus gel layer. Dig Dis Sci 2000, 45:2108-2114.
  • [41]Alander M, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A: Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett Appl Microbiol 1997, 24:361-364.
  • [42]Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, de Keersmaecker SC, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P: Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci U S A 2009, 106:17193-17198.
  • [43]Grimoud J, Durand H, de Souza S, Monsan P, Ouarné F, Theodorou V, Roques C: In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int J Food Microbiol 2010, 144:42-50.
  • [44]Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J: Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPAR{gamma} and peptidoglycan recognition protein 3. J Nutr 2011, 141:971-977.
  • [45]Carr KE, Toner PG: Morphology of the Intestinal Mucosa. Pharmacology of Intestinal Permeation I. Handbook of Experimental Pharmacology Volume 70/1. Edited by Csiiky ITZ. Berlin: Springer; 1984:1-50.
  • [46]Lepage P, Seksik P, Sutren M, de la Cochetière MF, Jian R, Marteau P, Doré J: Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 2005, 11:473-480.
  • [47]Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 2012, 6:1578-1585.
  • [48]Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ: Two routes of metabolic crossfeeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 2006, 72:3593-3599.
  • [49]Falony G, Vlachou A, Verbrugghe K, Vuyst LD: Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 2006, 72:7835-7841.
  • [50]Louis P, Flint HJ: Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009, 294:1-8.
  • [51]Pullan RD, Thomas G, Rhodes M: Thickness of adherent mucous gel on colonic mucosa in humans and its relevance to colitis. Gut 1994, 35:353-359.
  • [52]Pignata S, Maggini L, Zarrilli R, Rea A, Acquaviva AM: The enterocyte-like differentiation of the Caco-2 tumor cell line strongly correlates with responsiveness to cAMP and activation of kinase A pathway. Cell Growth Differ 1994, 5:967-973.
  • [53]Fluent INC: Fluent 6 User Manual. New York: Fluent Inc.; 2006.
  • [54]Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A, Weissgold DJ, Kim I, Delori FC, Adamis AP: Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 2000, 41:1181-1185.
  • [55]van den Abbeele P, Grootaert C, Possemiers S, Verstraete W, Verbeken K, van de Wiele T: In vitro model to study the modulation of the mucin-adhered bacterial community. Appl Microbiol Biotechnol 2009, 83:349-359.
  • [56]Blockhuys S, Vanhoecke B, Paelinck L, Bracke M, de Wagter C: Development of in vitro models for investigating spatially fractionated irradiation: physics and biological results. Phys Med Biol 2009, 54:1565-1578.
  • [57]Molly K, Woestyne MV, Verstraete W: Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotech 1993, 39:254-258.
  • [58]Possemiers S, Verthé K, Uyttendaele S, Verstraete W: PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2004, 49:495-507.
  • [59]van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, el Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, van de Wiele T: Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 2010, 76:5237-5246.
  • [60]van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W: Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2004, 51:143-153.
  • [61]Boon N, Top EM, Verstraete W, Siciliano SD: Bioaugmentation as a tool to protect the structure and function of an activated sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 2003, 69:1511-1520.
  • [62]Possemiers S, Bolca S, Grootaert C, Heyerick A, Decroos K, Dhooge W, de Keukeleire D, Rabot S, Verstraete W, van de Wiele T: The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 2006, 136:1862-1867.
  • [63]Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K: Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 2008, 47:367-373.
  • [64]Vermeiren J, van den Abbeele P, Laukens D, Vigsnaes LK, de Vos M, Boon N, van de Wiele T: Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol Ecol 2012, 79:685-696.
  • [65]Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW: Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 2002, 68:2982-2990.
  文献评价指标  
  下载次数:73次 浏览次数:34次