BMC Evolutionary Biology | |
Mitochondrial genomes of the Baltic clam Macoma balthica (Bivalvia: Tellinidae): setting the stage for studying mito-nuclear incompatibilities | |
Eric Pante1  Frédéric Escudié2  Nathalie Marsaud2  Vanessa Becquet1  Pascale Garcia1  Alice Saunier1  | |
[1] Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle 17000, France;GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan 31326, France | |
关键词: Hybrid zone; Inter-specific hybridization; Positive selection; OXPHO chain; Next-generation sequencing; ATP synthase; NADH dehydrogenase; | |
Others : 1121736 DOI : 10.1186/s12862-014-0259-z |
|
received in 2014-12-01, accepted in 2014-12-05, 发布年份 2014 | |
【 摘 要 】
Background
Allopatric divergence across lineages can lead to post-zygotic reproductive isolation upon secondary contact and disrupt coevolution between mitochondrial and nuclear genomes, promoting emergence of genetic incompatibilities. A previous FST scan on the transcriptome of the Baltic clam Macoma balthica highlighted several genes potentially involved in mito-nuclear incompatibilities (MNIs). As proteins involved in the mitochondrial oxidative phosphorylation (OXPHO) chain are prone to MNIs and can contribute to the maintenance of genetic barriers, the mitochondrial genomes of six Ma. balthica individuals spanning two secondary contact zones were sequenced using the Illumina MiSeq plateform.
Results
The mitogenome has an approximate length of 16,806 bp and encodes 13 protein-coding genes, 2 rRNAs and 22 tRNAs, all located on the same strand. atp8, a gene long reported as rare in bivalves, was detected. It encodes 42 amino acids and is putatively expressed and functional. A large unassigned region was identified between rrnS and tRNAMet and could likely correspond to the Control Region. Replacement and synonymous mutations were mapped on the inferred secondary structure of all protein-coding genes of the OXPHO chain. The atp6 and atp8 genes were characterized by background levels of replacement mutations, relative to synonymous mutations. However, most nad genes (notably nad2 and nad5) were characterized by an elevated proportion of replacement mutations.
Conclusions
Six nearly complete mitochondrial genomes were successfully assembled and annotated, providing the necessary roadmap to study MNIs at OXPHO loci. Few replacement mutations were mapped on mitochondrial-encoded ATP synthase subunits, which is in contrast with previous data on nuclear-encoded subunits. Conversely, the high population divergence and the prevalence of non-synonymous mutations at nad genes are congruent with previous observations from the nuclear transcriptome. This further suggest that MNIs between subunits of Complex I of the OXPHO chain, coding for NADH dehydrogenase, may play a role in maintaining barriers to gene flow in Ma. balthica.
【 授权许可】
2014 Saunier et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150213010956976.pdf | 795KB | download | |
Figure 3. | 66KB | Image | download |
Figure 2. | 27KB | Image | download |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Blier PU, Dufresne F, Burton RS: Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 2001, 17(7):400-406.
- [2]Rand DM, Haney RA, Fry AJ: Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 2004, 19(12):645-653.
- [3]Burton RS, Byrne RJ, Rawson PD: Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. Gene 2007, 403:53-59.
- [4]Burton RS, Ellison CK, Harrison JS: The sorry state of F2 hybrids: Consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat 2006, 168:S14-S24.
- [5]Montooth KL, Meiklejohn CD, Abt DN, Rand DM: Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 2010, 64(12):3364-3379.
- [6]Burton RS, Barreto FS: A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol Ecol 2012, 21(20):4942-4957.
- [7]Burton RS, Pereira RJ, Barreto FS: Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst 2013, 44(1):281-302.
- [8]Coyne J, Orr HA: Speciation. Inc. Sunderland, MA: Sinauer Associates; 2004.
- [9]Maheshwari S, Barbash DA: The genetics of hybrid incompatibilities. Annu Rev Genet 2011, 45(1):331-355.
- [10]Dobzhanksy T: Studies on hybrid sterility II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 1936, 21:113-135.
- [11]Muller HJ: Isolating mechanisms, evolution, and temperature. Biol Symp 1942, 6:71-125.
- [12]Ellison CK, Niehuis O, Gadau J: Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 2008, 21(6):1844-1851.
- [13]Gibson JD, Niehuis O, Peirson BRE, Cash EI, Gadau J: Genetic and developmental basis of F2 hybrid breakdown in Nasonia parasitoid wasps. Evolution 2013, 67(7):2124-2132.
- [14]Gibson JD, Niehuis O, Verrelli BC, Gadau J: Contrasting patterns of selective constraints in nuclear-encoded genes of the oxidative phosphorylation pathway in holometabolous insects and their possible role in hybrid breakdown in Nasonia. Heredity 2010, 104:310-317.
- [15]Gagnaire PA, Normandeau E, Bernatchez L: Comparative genomics reveals adaptive protein evolution and a possible cytonuclear incompatibility between European and American eels. Mol Biol Evol 2012, 29(10):2909-2919.
- [16]Jacobsen MW, Pujolar JM, Gilbert MTP, Moreno-Mayar JV, Bernatchez L, Als TD, Lobon-Cervia J, Hansen MM: Speciation and demographic history of Atlantic eels (Anguilla anguilla and A. rostrata) revealed by mitogenome sequencing. Heredity 2014, 113(5):432-442.
- [17]Barreto FS, Moy GW, Burton RS: Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Mol Ecol 2011, 20(3):560-572.
- [18]Ellison CK, Burton RS: Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 2008, 62(3):631-638.
- [19]Palumbi SR: Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 1994, 25:547-572.
- [20]Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Väinölä R, Viard F, Wares J: Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 2008, 89(11):S108-S122.
- [21]Becquet V, Simon-Bouhet B, Pante E, Hummel H, Garcia P: Glacial refugium versus range limit: Conservation genetics of Macoma balthica, a key species in the Bay of Biscay (France). J Exp Mar Bio Ecol 2012, 432–433:73-82.
- [22]Nikula R, Strelkov P, Väinölä R: Diversity and trans-artic invasion history of mitochondrial lineages in the north atlantic Macoma balthica complex (Bivalvia: Tellinidae). Evolution 2007, 61(4):928-941.
- [23]Luttikhuizen PC, Drent J, Baker AJ: Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 2003, 12:2215-2229.
- [24]Pante E, Rohfritsch A, Becquet V, Belkhir K, Bierne N, Garcia P: SNP detection from De Novo transcriptome sequencing in the bivalve Macoma balthica: marker development for evolutionary studies. PLoS One 2012, 7(12):1-10.
- [25]Wang H, Zhang S, Li Y, Liu B: Complete mtDNA of Meretrix lusoria (Bivalvia: Veneridae) reveals the presence of an atp8 gene, length variation and heteroplasmy in the control region. Comp Biochem Physiol Part D 2010, 5:256-264.
- [26]Yuan Y, Li Q, Yu H, Kong L: The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS One 2012, 7(2):1-9.
- [27]Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T: Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012, 13(1):134. BioMed Central Full Text
- [28]Burger G, Lavrov DV, Forget L, Lang BF: Sequencing complete mitochondrial and plastid genomes. Nat Protoc 2007, 2(3):603-614.
- [29]Andrews S: FastQC: a quality control tool for high throughput sequence data. Available athttp://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 2010.
- [30]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18:821-829.
- [31]Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shawand PD, Marshall D: Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 2013, 14(2):193-202.
- [32]Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7(1–2):203-214.
- [33]Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF: MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013, 69(2):313-319.
- [34]Okonechnikov K, Golosova O, Fursov M, Team U: Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012, 28(8):1166-1167.
- [35]Conant GC, Wolfe KH: GenomeVx: Simple web-based creation of editable circular chromosome maps. Bioinformatics 2007, 24(6):861-862.
- [36]Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
- [37]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
- [38]Beitz E: TeXshade: shading and labeling of multiple sequence alignments using LaTeX2e. Bioinformatics 2000, 16(2):135-139.
- [39]Paradis E, Claude J, Strimmer K: APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 2004, 20(2):289-290.
- [40]Charif D, Lobry J: SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In Structural Approaches to Sequence Evolution. Edited by Bastolla U, Porto M, Roman HE, Vendruscolo M. Springer, Berlin Heidelberg; 2007:207-232.
- [41]R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [http://www.R-project.org/]; 2014.
- [42]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10(3):512-526.
- [43]Darriba D, Taboada G, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012, 9:772-772.
- [44]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
- [45]Paradis E, Schliep K, Potts A, Winter D: pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 2010, 26:419-420.
- [46]Omasits U, Ahrens CH, Müller S, Wollscheid B: Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30(6):884-886.
- [47]Boore JL: Survey and summary: animal mitochondrial genomes. Nucleic Acid Res 1999, 27(8):1767-1780.
- [48]Gissi C, Iannelli F, Pesole C: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 2008, 101:301-320.
- [49]Imanishi Y, Tanaka M, Fujiwara M: Complete mitochondrial genome sequence of Japanese cockle Fulvia mutica (Cardiidae). Fisheries Science 2013, 79(6):949-957.
- [50]Meng X, Zhao N, Shen X, Hao J, Liang M, Zhu X, Cheng H, Yan B, Liu Z: Complete mitochondrial genome of Coelomactra antiquata (Mollusca: Bivalvia): The first representative from the family Mactridae with novel gene order and unusual tandem repeats. Comp Biochem Physiol Part D Genomics Proteomics 2012, 7(2):175-179.
- [51]Ren J, Shen X, Sun M, Jiang F, Yu Y, Chi Z, Liu B: The complete mitochondrial genome of the clam Meretrix petechialis (Mollusca: Bivalvia: Veneridae). Mitochondrial DNA 2009, 20(4):78-87.
- [52]Dreyer H, Steiner G: The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica – and the first record for a putative Atpase subunit 8 gene in marine bivalves. Front Zool 2006, 3(13):1-14.
- [53]Passamonti M, Scali V: Gender-associated mitochondrial DNA heteroplasmy in the venerid clam Tapes philippinarum (Mollusca Bivalvia). Curr Genet 2001, 39(2):117-124.
- [54]Wang H, Zhang S, Xiao G, Liu B: Complete mtDNA of the Meretrix lamarckii (Bivalvia: Veneridae) and molecular identification of suspected M. lamarckii based on the whole mitochondrial genome. Marine Genomics 2011, 4:263-271.
- [55]Yuan Y, Li Q, Kong L, Yu H: The complete mitochondrial genome of the grand jackknife clam, Solen grandis (Bivalvia: Solenidae): a novel gene order and unusual non-coding region. Mol Biol Rep 2012, 39:1287-1292.
- [56]Yuan Y, Li Q, Kong L, Yu H: The complete mitochondrial genome of Solen strictus (Bivalvia: Solenidae). Mitochondrial DNA 2012, 23(2):112-114.
- [57]Zheng R, Li J, Niu D: The complete DNA sequence of the mitochondrial genome of Sinonovacula constricta (Bivalvia: Solecurtidae). Acta Oceanologica Sinica 2010, 29(2):88-92.
- [58]Xu X, Wu X, Yu Z: Comparative studies of the complete mitochondrial genomes of four Paphia clams and reconsideration of subgenus Neotapes (Bivalvia: Veneridae). Gene 2012, 494:17-23.
- [59]He C, Wang J, Gao X, Song W, Li H, Li Y, Liu W, Su H: The complete mitochondrial genome of the hard clam Meretrix meretrix. Mol Biol Rep 2011, 38:3401-3409.
- [60]Breton S, Stewart DT, Hoeh WR: Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): Identification of the "missing" ATPase 8 gene. Marine Genomics 2010, 3(1):11-18.
- [61]Śmietanka B, Burzynski A, Wenne R: Comparative genomics of marine mussels (Mytilus spp.) gender associated mtDNA: rapidly evolving atp8. J Mol Evol 2010, 71(5–6):385-400.
- [62]Gissi C, Iannelli F, Pesole G: Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in Ascidians. J Mol Evol 2004, 58(4):376-389.
- [63]Papakonstantinou T, Law RHP, Nagley P, Devenish RJ: Non-functional variants of yeast mitochondrial ATP synthase subunit 8 that assemble into the complex. Biochem Mol Biol Int 1996, 39(2):253-260.
- [64]Stephens AN, Khan MA, Roucou X, Nagley P, Devenish RJ: The molecular neighborhood of subunit 8 of yeast mitochondrial F1F0-ATP synthase probed by cysteine scanning mutagenesis and chemical modification. J Biol Chem 2003, 278(20):17867-17875.
- [65]Dong Y, Somero GN: Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions. J Exp Biol 2009, 212(2):169-177.
- [66]Rawson PD, Burton RS: Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc Natl Acad Sci 2002, 99(20):12955-12958.
- [67]McDonald JH, Kreitman M: Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991, 351:652-654.
- [68]Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res 2013, 41(D1):D36-D42.