BMC Research Notes | |
Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML | |
Stefanie Enge1  Dawid Lbik1  Martin Kollmar1  | |
[1] Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany | |
关键词: WHAMM; WASH; WAVE; WASP; WASP family proteins; ARP2/3 activation; | |
Others : 1166677 DOI : 10.1186/1756-0500-5-88 |
|
received in 2011-11-03, accepted in 2012-02-08, 发布年份 2012 | |
【 摘 要 】
Background
WASP family proteins stimulate the actin-nucleating activity of the ARP2/3 complex. They include members of the well-known WASP and WAVE/Scar proteins, and the recently identified WASH and WHAMM proteins. WASP family proteins contain family specific N-terminal domains followed by proline-rich regions and C-terminal VCA domains that harbour the ARP2/3-activating regions.
Results
To reveal the evolution of ARP2/3 activation by WASP family proteins we performed a "holistic" analysis by manually assembling and annotating all homologs in most of the eukaryotic genomes available. We have identified two new families: the WAML proteins (WASP and MIM like), which combine the membrane-deforming and actin bundling functions of the IMD domains with the ARP2/3-activating VCA regions, and the WAWH protein (WASP without WH1 domain) that have been identified in amoebae, Apusozoa, and the anole lizard. Surprisingly, with one exception we did not identify any alternative splice forms for WASP family proteins, which is in strong contrast to other actin-binding proteins like Ena/VASP, MIM, or NHS proteins that share domains with WASP proteins.
Conclusions
Our analysis showed that the last common ancestor of the eukaryotes must have contained a homolog of WASP, WAVE, and WASH. Specific families have subsequently been lost in many taxa like the WASPs in plants, algae, Stramenopiles, and Euglenozoa, and the WASH proteins in fungi. The WHAMM proteins are metazoa specific and have most probably been invented by the Eumetazoa. The diversity of WASP family proteins has strongly been increased by many species- and taxon-specific gene duplications and multimerisations. All data is freely accessible via http://www.cymobase.org webcite.
【 授权许可】
2012 Kollmar et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150416052359815.pdf | 1672KB | download | |
Figure 16. | 107KB | Image | download |
Figure 15. | 58KB | Image | download |
Figure 14. | 52KB | Image | download |
Figure 13. | 87KB | Image | download |
Figure 12. | 58KB | Image | download |
Figure 11. | 57KB | Image | download |
Figure 10. | 179KB | Image | download |
Figure 9. | 201KB | Image | download |
Figure 8. | 56KB | Image | download |
Figure 7. | 35KB | Image | download |
Figure 6. | 100KB | Image | download |
Figure 5. | 37KB | Image | download |
Figure 4. | 101KB | Image | download |
Figure 3. | 265KB | Image | download |
Figure 2. | 39KB | Image | download |
Figure 1. | 46KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
【 参考文献 】
- [1]Le Clainche C, Carlier MF: Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 2008, 88(2):489-513.
- [2]Chhabra ES, Higgs HN: The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 2007, 9(10):1110-1121.
- [3]Firat-Karalar EN, Welch MD: New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 2011, 23(1):4-13.
- [4]Campellone KG, Welch MD: A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 2010, 11(4):237-251.
- [5]Pollard TD: Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 2007, 36:451-477.
- [6]Chesarone MA, Goode BL: Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 2009, 21(1):28-37.
- [7]Takenawa T, Suetsugu S: The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 2007, 8(1):37-48.
- [8]Goley ED, Welch MD: The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 2006, 7(10):713-726.
- [9]Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N: Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant 2008, 15(1 Suppl):84-90.
- [10]Notarangelo LD, Miao CH, Ochs HD: Wiskott-Aldrich syndrome. Curr Opin Hematol 2008, 15(1):30-36.
- [11]Kirchhausen T, Rosen FS: Disease mechanism: unravelling Wiskott-Aldrich syndrome. Curr Biol 1996, 6(6):676-678.
- [12]Bear JE, Rawls JF, Saxe CL: SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J Cell Biol 1998, 142(5):1325-1335.
- [13]Miki H, Suetsugu S, Takenawa T: WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 1998, 17(23):6932-6941.
- [14]Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK: Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 2000, 404(6774):151-158.
- [15]de la Fuente MA, Sasahara Y, Calamito M, Anton IM, Elkhal A, Gallego MD, Suresh K, Siminovitch K, Ochs HD, Anderson KC, et al.: WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP). Proc Natl Acad Sci USA 2007, 104(3):926-931.
- [16]Ramesh N, Geha R: Recent advances in the biology of WASP and WIP. Immunol Res 2009, 44(1-3):99-111.
- [17]Stovold CF, Millard TH, Machesky LM: Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol 2005, 6(1):11. BioMed Central Full Text
- [18]Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW: Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 2002, 418(6899):790-793.
- [19]Linardopoulou EV, Parghi SS, Friedman C, Osborn GE, Parkhurst SM, Trask BJ: Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet 2007, 3(12):e237.
- [20]Campellone KG, Webb NJ, Znameroski EA, Welch MD: WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 2008, 134(1):148-161.
- [21]Zuchero JB, Coutts AS, Quinlan ME, Thangue NB, Mullins RD: p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol 2009, 11(4):451-459.
- [22]Veltman DM, Insall RH: WASP family proteins: their evolution and its physiological implications. Mol Biol Cell 2010, 21(16):2880-2893.
- [23]Jia D, Gomez TS, Metlagel Z, Umetani J, Otwinowski Z, Rosen MK, Billadeau DD: WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci USA 2010, 107(23):10442-10447.
- [24]Odronitz F, Becker S, Kollmar M: Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins. BMC Genomics 2009, 10:173. BioMed Central Full Text
- [25]Odronitz F, Kollmar M: Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 2007, 8(9):R196. BioMed Central Full Text
- [26]Kurtzman CP: Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie Van Leeuwenhoek 2011, 99(1):13-23.
- [27]Van de Peer Y, Maere S, Meyer A: 2R or not 2R is not the question anymore. Nat Rev Genet 2010, 11(2):166.
- [28]Steinke D, Hoegg S, Brinkmann H, Meyer A: Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biol 2006, 4:16. BioMed Central Full Text
- [29]Padrick SB, Rosen MK: Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem 2010, 79:707-735.
- [30]Rottner K, Hanisch J, Campellone KG: WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 2010, 20(11):650-661.
- [31]Dominguez R: Actin filament nucleation and elongation factors-structure-function relationships. Crit Rev Biochem Mol Biol 2009, 44(6):351-366.
- [32]Lee SH, Kerff F, Chereau D, Ferron F, Klug A, Dominguez R: Structural basis for the actin-binding function of missing-in-metastasis. Structure 2007, 15(2):145-155.
- [33]Dominguez R: The beta-thymosin/WH2 fold: multifunctionality and structure. Ann N Y Acad Sci 2007, 1112:86-94.
- [34]Le Page Y, Demay F, Salbert G: A neural-specific splicing event generates an active form of the Wiskott-Aldrich syndrome protein. EMBO Rep 2004, 5(9):895-900.
- [35]Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA: Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 2002, 111(4):565-576.
- [36]Shiraishi-Yamaguchi Y, Furuichi T: The Homer family proteins. Genome Biol 2007, 8(2):206. BioMed Central Full Text
- [37]Brooks SP, Coccia M, Tang HR, Kanuga N, Machesky LM, Bailly M, Cheetham ME, Hardcastle AJ: The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology. Hum Mol Genet 2010, 19(12):2421-2432.
- [38]Millard TH, Sharp SJ, Machesky LM: Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 2004, 380(Pt 1):1-17.
- [39]Kurisu S, Takenawa T: The WASP and WAVE family proteins. Genome Biol 2009, 10(6):226. BioMed Central Full Text
- [40]Burdon KP, McKay JD, Sale MM, Russell-Eggitt IM, Mackey DA, Wirth MG, Elder JE, Nicoll A, Clarke MP, FitzGerald LM, et al.: Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance-Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation. Am J Hum Genet 2003, 73(5):1120-1130.
- [41]Innocenti M, Zucconi A, Disanza A, Frittoli E, Areces LB, Steffen A, Stradal TE, Di Fiore PP, Carlier MF, Scita G: Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol 2004, 6(4):319-327.
- [42]Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2011, (39 Database):D38-D51.
- [43]Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA: Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 2010, 59(5):518-533.
- [44]Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2007, 2(8):e790.
- [45]Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K: Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 2009, 53(3):872-880.
- [46]Keeling PJ: Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 2009, 56(1):1-8.
- [47]Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D: Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 2007, 24(8):1702-1713.
- [48]Reeb VC, Peglar MT, Yoon HS, Bai JR, Wu M, Shiu P, Grafenberg JL, Reyes-Prieto A, Rummele SE, Gross J, et al.: Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol Phylogenet Evol 2009, 53(1):202-211.
- [49]Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci USA 2009, 106(10):3859-3864.
- [50]Burki F, Shalchian-Tabrizi K, Pawlowski J: Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol Lett 2008, 4(4):366-369.
- [51]Keeling PJ: The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010, 365(1541):729-748.
- [52]Paps J, Baguna J, Riutort M: Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal acoelomorpha. Mol Biol Evol 2009, 26(10):2397-2406.
- [53]Bourlat SJ, Nielsen C, Economou AD, Telford MJ: Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 2008, 49(1):23-31.
- [54]Simpson AG, Inagaki Y, Roger AJ: Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of "primitive" eukaryotes. Mol Biol Evol 2006, 23(3):615-625.
- [55]Deeks MJ, Kaloriti D, Davies B, Malho R, Hussey PJ: Arabidopsis NAP1 is essential for Arp2/3-dependent trichome morphogenesis. Curr Biol 2004, 14(15):1410-1414.
- [56]Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT: BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004, 303(5657):495-499.
- [57]Itoh T, De Camilli P: BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 2006, 1761(8):897-912.
- [58]Frost A, Unger VM, De Camilli P: The BAR domain superfamily: membrane-molding macromolecules. Cell 2009, 137(2):191-196.
- [59]Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Futterer K: Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 2005, 24(2):240-250.
- [60]Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N: A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 2004, 279(15):14929-14936.
- [61]Liu SL, Needham KM, May JR, Nolen BJ: Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J Biol Chem 2011, 286(19):17039-17046.
- [62]Eckert C, Hammesfahr B, Kollmar M: A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC Evol Biol 2011, 11:268. BioMed Central Full Text
- [63]Galletta BJ, Chuang DY, Cooper JA: Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol 2008, 6:(1):e1.
- [64]Sirotkin V, Beltzner CC, Marchand JB, Pollard TD: Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J Cell Biol 2005, 170(4):637-648.
- [65]Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al.: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004, 431(7011):946-957.
- [66]Odronitz F, Kollmar M: Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase). BMC Genomics 2006, 7:300. BioMed Central Full Text
- [67]Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002., Chapter 2Unit 2.3
- [68]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008, 57(5):758-771.
- [69]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
- [70]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275-282.