期刊论文详细信息
BMC Genomics
A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation
Philipp W Simon3  Shelby Ellison1  Joshua Parsons1  Douglas Senalik3  Mehtap Yildiz4  Massimo Iorizzo1  Pablo F Cavagnaro2 
[1]Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
[2]CONICET, Facultad de Ciencias Agrarias – Universidad Nacional de Cuyo, and INTA E.E.A. La Consulta, Ex Ruta 40. km 96, La Consulta CC 8, Mendoza 5567, Argentina
[3]USDA-Agricultural Research Service, Vegetable Crops Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
[4]Department of Agricultural Biotechnology, Faculty of Agriculture, Yuzuncu Yil University, 65080 Van, Turkey
关键词: Single nucleotide polymorphism;    Linkage map;    QTL mapping;    Anthocyanins;    Carrot;   
Others  :  1127224
DOI  :  10.1186/1471-2164-15-1118
 received in 2014-09-11, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by high performance liquid chromatography in segregating F2, F3 and F4 generations of a mapping population, mapped quantitative trait loci (QTL) onto a dense gene-derived single nucleotide polymorphism (SNP)-based linkage map, and performed comparative trait mapping with two unrelated populations.

Results

Root pigmentation, scored visually as presence or absence of purple coloration, segregated in a pattern consistent with a two gene model in an F2, and progeny testing of F3-F4 families confirmed the proposed genetic model. Purple petiole pigmentation was conditioned by a single dominant gene that co-segregates with one of the genes conditioning root pigmentation. Root total pigment estimate (RTPE) was scored as the percentage of the root with purple color.

All five anthocyanin glycosides previously reported in carrot, as well as RTPE, varied quantitatively in the F2 population. For the purpose of QTL analysis, a high resolution gene-derived SNP-based linkage map of carrot was constructed with 894 markers covering 635.1 cM with a 1.3 cM map resolution. A total of 15 significant QTL for all anthocyanin pigments and for RTPE mapped to six chromosomes. Eight QTL with the largest phenotypic effects mapped to two regions of chromosome 3 with co-localized QTL for several anthocyanin glycosides and for RTPE. A single dominant gene conditioning anthocyanin acylation was identified and mapped.

Comparative mapping with two other carrot populations segregating for purple color indicated that carrot anthocyanin pigmentation is controlled by at least three genes, in contrast to monogenic control reported previously.

Conclusions

This study generated the first high resolution gene-derived SNP-based linkage map in the Apiaceae. Two regions of chromosome 3 with co-localized QTL for all anthocyanin pigments and for RTPE, largely condition anthocyanin accumulation in carrot roots and leaves. Loci controlling root and petiole anthocyanin pigmentation differ across diverse carrot genetic backgrounds.

【 授权许可】

   
2014 Cavagnaro et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220055327691.pdf 1225KB PDF download
Figure 4. 7KB Image download
Figure 3. 88KB Image download
Figure 2. 57KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Harborne JB, Williams CA: Advances in flavonoid research since 1992. Phytochemistry 2000, 55:481-504.
  • [2]Koes RE, Quattrocchio F, Mol JNM: The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 1993, 16:123-132.
  • [3]Holton TA, Cornish EC: Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995, 7:1071-1083.
  • [4]Dixon RA, Palva NL: Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7:1085-1097.
  • [5]Shirley BW: Flavonoid biosynthesis: “new” functions for an “old” pathway. Trends Plant Sci 1996, 1:377-382.
  • [6]Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002, 22:19-34.
  • [7]Manach C, Williamson G, Morand C, Scalbert A, Rémésy C: Bioavailability and bioefficacy of polyphenols in humans. I. review of 97 bioavailability studies. Am J Clin Nutr 2005, 81:230S-242S.
  • [8]Herrmann KM, Weaver LM: The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 1999, 50:473-503.
  • [9]Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, Hohtola A: Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 2002, 130:729-739.
  • [10]Gould KS, Davies K, Winefield C: Anthocyanins: Biosynthesis, Functions, and Applications. New York: Springer; 2008.
  • [11]Kurilich AC, Clevidence BA, Britz SJ, Simon PW, Novotny JA: Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem 2005, 5:6537-6542.
  • [12]Montilla EC, Arzaba MR, Hillebrand S, Winterhalter P: Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars antonina, beta sweet, deep purple, and purple haze. J Agric Food Chem 2011, 59:3385-3390.
  • [13]Jung CS, Griffith HM, De Jong DM, Cheng S, Bodis M, De Jong WS: The potato P locus codes for flavonoid 3050-hydroxylase. Theor Appl Genet 2005, 110:269-275.
  • [14]Lalusin AG, Ohta M, Fujimura T: Temporal and spatial expression of genes involved in anthocyanin biosynthesis during sweet potato (Ipomoea batatas (L.) Lam.) root development. Int J Plant Sci 2006, 167:249-256.
  • [15]Lu QN, Yang Q: cDNA cloning and expression of anthocyanin biosynthetic genes in wild potato (Solanum pinnatisectum). Afr J Biotechnol 2006, 5:811-818.
  • [16]Mano H, Ogasawara F, Sato K, Higo H, Minobe Y: Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 2007, 143:1252-1268.
  • [17]Simon PW: Inheritance and expression of purple and yellow storage root color in carrot. J Hered 1996, 87:63-66.
  • [18]Yildiz M, Willis DK, Cavagnaro PF, Iorizzo M, Abak K, Simon PW: Expression and mapping of anthocyanin biosynthesis genes in carrot. Theor Applied Genetics 2013, 126:1689-1702.
  • [19]Pojer E, Mattivi F, Johnson D, Stockley CS: The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci F 2013, 12:483-508.
  • [20]Novotny JA, Clevidence BA, Kurilich AC: Anthocyanin kinetics are dependent on anthocyanin structure. Br J Nutr 2012, 107:504-509.
  • [21]Charron CS, Kurilich AC, Clevidence BA, Simon PW, Harrison DJ, Britz AJ, Baer DJ, Novotny JA: Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. J Agric Food Chem 2009, 57:1226-1230.
  • [22]Netzel M, Netzel G, Kammerer DR, Schieber A, Carle R, Simons L, Bitsch I, Bitsch R, Konczak I: Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov Food Sci Emerg Technol 2007, 8:365-372.
  • [23]Malien-Aubert C, Dangles O, Amiot MJ: Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. protective effects by intra- and intermolecular copigmentation. J Agric Food Chem 2001, 49:170-176.
  • [24]Harborne JB: A unique pattern of anthocyanins in Daucus carota and other Umbelliferae. Biochem Syst Ecol 1976, 4:31-35.
  • [25]Dooner HK, Robbins TP, Jorgensen RA: Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 1991, 25:173-199.
  • [26]Vivek BS, Simon PW: Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 1999, 99:58-64.
  • [27]Boiteux LS, Belter JG, Roberts PA, Simon PW: RAPD linkage map of the genomic region encompassing the rootknot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 2000, 100:439-446.
  • [28]Santos CAF, Simon PW: QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics 2002, 268:122-129.
  • [29]Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW: Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 2007, 114:693-704.
  • [30]Cavagnaro PF, Chung SM, Manin S, Yildiz M, Ali A, Alessandro MS, Iorizzo M, Senalik DA, Simon PW: Microsatellite isolation and marker development in carrot-genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genomics 2011, 12:386. BioMed Central Full Text
  • [31]Alessandro MS, Galmarini CR, Iorizzo M, Simon PW: Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 2013, 126:415-423.
  • [32]Grzebelus D, Jagosz B, Simon PW: The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 2007, 390:67-74.
  • [33]Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro PF, Macko-Podgorni A, Heller-Uszynska K, Kilian A, Nothnagel T, Allender C, Simon PW, Baranski R: Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol Breeding 2014, 33:625-637.
  • [34]Iovene M, Cavagnaro PF, Senalik D, Buell CR, Jiang J, Simon PW: Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 2011, 19:493-506.
  • [35]Iorizzo M, Senalik D, Ellison S, Grzebelus D, Cavagnaro PF, Spooner D, Van Deynze A, Simon PW: Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.). In Plant and Animal Genome XXI Conference, 12–16 January. San Diego, California: Scherago International; 2013.
  • [36]Van Ooijen JW: JoinMap 4.0: Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Netherlands: Kyazma B.V; 2006.
  • [37]Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1987, 1:174-181.
  • [38]Cheema J, Dicks J: Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform 2009, 10:595-608.
  • [39]Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B: A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 2010, 27:10-17.
  • [40]Sewell MM, Sherman BK, Neale DB: A consensus map for loblolly pine (Pinus taeda L.). I. construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 1999, 151:321-330.
  • [41]Gosselin I, Zhou Y, Bousquet J, Isabel N: Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet 2002, 104:987-997.
  • [42]Qi X, Stam P, Lindhout P: Comparison and integration of four barley genetic maps. Genome 1996, 39:379-394.
  • [43]Liebhard R, Koller B, Gianfranceschi L, Gessler C: Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor Appl Genet 2003, 106:1497-508.
  • [44]Cartwright DA, Troggio M, Velasco R, Gutin A: Genetic mapping in the presence of genotyping errors. Genetics 2007, 176:2521-2527.
  • [45]Hackett CA, Broadfoot LB: Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 2003, 90:33-38.
  • [46]Parsons DJ: QTL for Meloidogyne Incognita Root Knot Nematode Resistance and other Traits of Interest in Carrot (Daucus carota). University of Wisconsin, Horticulture Department; 2014. [PhD thesis]
  • [47]Iorizzo M, Senalik D, Ellison S, Cavagnaro PF, Cheng S, Zheng P, Zheng Z, Van Deynze A, Simon PW: The building of the first Apiaceae genome. In Plant and Animal Genome XXII Conference, 11–15 January. San Diego, California: Scherago International; 2014.
  • [48]Gläßgen W, Seitz H: Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 1992, 186:582-585.
  • [49]Rose A, Gläßgen W, Hopp W, Seitz H: Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 1996, 198:397-403.
  • [50]He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, Reeves MJ, Duan CQ: Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010, 15:9057-9091.
  • [51]Montefiori M, Espley RV, Stevenson D, Cooney J, Datson PM, Saiz A, Atkinson RG, Hellens RP, Allan AC: Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). Plant J 2011, 65:106-118.
  • [52]Yonekura-Sakakibara K, Fukushima A, Nakabayashi R, Hanada K, Matsuda F, Sugawara S, Inoue E, Kuromori T, Ito T, Shinozaki K, Wangwattana B, Yamazaki M, Saito K: Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J 2012, 69:154-167.
  • [53]Goulas V, Vicente AR, Manganaris GA: Structural diversity of anthocyanins in fruits. In Anthocyanins: Structure, Biosynthesis and Health Benefits. Chapter 10. Edited by Motohashi N. Hauppauge: Nova Science Publishers Inc; 2012:225-250.
  • [54]Hopp W, Seitz HU: The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota. Planta 1987, 170:74-85.
  • [55]Bushakra JM, Krieger C, Deng D, Stephens MJ, Allan AC, Storey R, Symonds VV, Stevenson D, McGhie T, Chagné D, Buck EJ, Gardiner SE: QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 2013, 126:847-865.
  • [56]Fournier-Level A, Hugueney P, Verriès C, This P, Ageorges A: Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol 2011, 11:179. BioMed Central Full Text
  • [57]SAS 9.1.3 Help and Documentation. SAS Institute, Inc Cary, NC; 2000–2004.
  • [58]Murray M, Thompson W: Rapid isolation of high-molecular weight plant DNA. Nucleic Acids Res 1980, 8:4321-4325.
  • [59]Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW: De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 2012, 12:389.
  • [60]Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lubberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M: Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 1999, 99:921-935.
  • [61]Broman KW, Sen S: A Guide to QTL Mapping with R/qtl. New York: Springer; 2009.
  • [62]Rozen S, Skaletsky HJ: Primer3. 1998. [http://www-genome.wi.mit.edu/genome_software/other/primer3.html webcite]
  • [63]Banga O: Origin and domestication of the western cultivated carrot. Genetica Agraria 1963, 17:357-370.
  • [64]De Jong H: Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. Am. Potato J 1991, 68:585-593.
  • [65]D’Amelia V, Aversano R, Batelli G, Caruso I, Moreno MC, Castro-Sanz AB, Chiaiese P, Fasano C, Palomba F, Carputo D: High An1 variability and interaction with basic helix-loop-helix co-factors related to anthocynin biosynthesis in potato leaves. Plant J 2014. doi:10.1111/tpj.12653
  文献评价指标  
  下载次数:21次 浏览次数:17次