期刊论文详细信息
BMC Public Health
Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping
Marc Souris2  Pornsuk Kerdthong3  Thawisak Thongbu3  Taravudh Tipdecho1  Nitin K Tripathi1  Muhammad Shahzad Sarfraz1 
[1]Remote Sensing and GIS, School of Engineering and Technology, Asian Institute of Technology (AIT), P.O. Box 4, Pathumthani 12120, Klong Luang, Thailand
[2], Institut de Recherche pour le Développement (IRD), UMR 190, Marseille, France
[3]The Office of Disease Prevention and Control, Bureau of Vector Borne Disease (9th), Ministry of Public Health, Wat bot road, Muang Phitsanulok 65000, Thailand
Others  :  1163008
DOI  :  10.1186/1471-2458-12-853
 received in 2012-04-19, accepted in 2012-10-03,  发布年份 2012
PDF
【 摘 要 】

Background

Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes.

Methods

Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic.

Results

Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture land were significantly and positively correlated (p = 0.05) during the month of May, and perennial vegetation showed a highly significant and positive correlation (p = 0.001) in the month of March with C.I. and significant and positive correlation (p <= 0.05) with B.I., respectively.

Conclusions

The study concluded that gasoline stations/workshops, rice paddy, marsh/swamp and deciduous forests played highly significant role in dengue vector growth. Thus, the spatio-temporal relationships of dengue vector larval density and land-use types may help to predict favorable dengue habitat, and thereby enables public healthcare managers to take precautionary measures to prevent impending dengue outbreak.

【 授权许可】

   
2012 Sarfraz et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413085225838.pdf 5941KB PDF download
Figure 11. 15KB Image download
Figure 10. 164KB Image download
Figure 9. 186KB Image download
Figure 8. 43KB Image download
Figure 7. 184KB Image download
Figure 6. 77KB Image download
Figure 5. 77KB Image download
Figure 4. 75KB Image download
Figure 3. 22KB Image download
Figure 2. 32KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Rezza G: Aedes albopictus and the reemergence of Dengue. BMC Public Health 2012, 12:72. BioMed Central Full Text
  • [2]Chang A, Parrales M, Jimenez J, Sobieszczyk M, Hammer S, Copenhaver D, Kulkarni R: Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries. Int J Health Geographics 2009, 8:49. BioMed Central Full Text
  • [3]World Health Organization Regional Office for South-East Asia: Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. New Delhi, India; 2011. http://www.searo.who.int/LinkFiles/Dengue_DHF_prevention&control_guidelines_rev.pdf webcite
  • [4]Lin C, Wen T: Using Geographically Weighted Regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int J Environ Res Public Health 2011, 8(7):2798-2815.
  • [5]Patz J, Olson S, Uejio C, Gibbs H: Disease emergence from global climate and land use change. Med Clinics of North Am 2008, 92(6):1473-1491.
  • [6]Kitron U: Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomology 1998, 35(4):435-445.
  • [7]Patz J, Norris D: Land use change and human health. DeFries, Asner, and Houghton, Note 2004, 6:159-67.
  • [8]Asner G, Elmore A, Olander L, Martin R, Harris A: Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 2004, 29:261-299.
  • [9]Ramankutty N, Foley J: Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles 1999, 13(4):997-1027.
  • [10]Application of GIS modeling for dengue fever prone area based on socio-cultural and environmental factors–a case study of delhi city zone Citeseer. http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/2_WG-VIII-2/03.pdf webcite
  • [11]Vanwambeke S, Lambin E, Eichhorn M, Flasse S, Harbach R, Oskam L, Somboon P, van Beers S, van Benthem B, Walton C: Impact of land-use change on dengue and malaria in northern Thailand. EcoHealth 2007, 4:37-51.
  • [12]Sanchez L, Cortinas J, Pelaez O, Gutierrez H, Concepcion D, Van DerStuyft P: Breteau Index threshold levels indicating risk for dengue transmission in areas with low Aedes infestation. Trop Med & Int Health 2010, 15(2):173-175.
  • [13]Jeefoo P, Tripathi N, Souris M: Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao Province, Thailand. Int J Env Res Public Health 2010, 8:51-74.
  • [14]Martínez-Vega R, Danis-Lozano R, Velasco-Hernández J, Díaz-Quijano F, González-Fernández M, Santos R, Román S, Argaez-Sosa J, Nakamura M, Ramos-Castañeda J: A prospective cohort study to evaluate peridomestic infection as a determinant of dengue transmission: Protocol. BMC Public Health 2012, 12:262. BioMed Central Full Text
  • [15]Nakhapakorn K, Tripathi N: An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geographics 2005, 4:13. BioMed Central Full Text
  • [16]George R, Lum L, Gubler D, Kuno G: Clinical spectrum of dengue infection. In Dengue and Dengue Hemorrhagic Fever. Edited by Gubler DJ, Wallingford KunoG.. UK: CAB International; 1997:89-113.
  • [17]Campaign Against Dengue, National Environment Agency Singapore http://www.dengue.gov.sg/images/Guidelines webcite
  • [18]Halstead SB: Dengue. London: Imperial College Pr; 2009. http://books.google.co.th/books?id=6zLd9mFwxwsC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v= webcite onepage&q&f=false
  • [19]Ostfeld R, Glass G, Keesing F: Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecol & Evol 2005, 20(6):328-336.
  • [20]Barbazan P, Tuntaprasart W, Souris M, Demoraes F, Nitatpattana N, Boonyuan W, Gonzalez J: Assessment of a new strategy, based on Aedes aegypti (L.) pupal productivity, for the surveillance and control of dengue transmission in Thailand. Ann Trop Med Parasitology 2008, 102(2):161-171.
  • [21]Vanwambeke S, Van Benthem B, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin E, Somboon P: Multi-level analyses of spatial and temporal determinants for dengue infection. Int J Health Geographics 2006, 5:5. BioMed Central Full Text
  • [22]Phitsanulok Provincial Statistical Office MinistyofInformationandCommunicationTechnology: Provincial Statistical Report: 2011. Phitsanulok, Thailand;. 2011. http://web.nso.go.th/ webcite
  • [23]Bohra A, Andrianasolo H: Application of GIS in modeling of dengue risk based on sociocultural data: case of Jalore, Rajasthan, India. Dengue Bull 2001, 25:92-102.
  • [24]National Institute of Health (NIH) of Thailand Department of Medical Sciences: Biology, Ecology and Mosquito Control in Thailand (Thai-version). Bangkok, Thailand; 2010. http://webdb.dmsc.moph.go.th/ifc_nih/a_nih_1_001c.asp?info_id=1366 webcite
  • [25]PROC Factor: how to interpret the output of a real-world exampls http://www2.sas.com/proceedings/sugi22/STATS/PAPER268.PDF webcite
  • [26]Suhr D: Principal component analysis vs. exploratory factor analysis. SUGI 30 Proceedings 2005, 203-230. http://www2.sas.com/proceedings/sugi30/203-30.pdf webcite
  • [27]Huang G, Govoni S, Choi J, Hartley M, Wilson M: Geovisualizing Data with Ring Maps. ArcUser, Winter 2008, 54-55. http://www.esri.com/news/arcuser/0408/files/ringmaps.pdf webcite
  • [28]Lourenço-de Oliveira R, Castro M, Braks M, Lounibos L: The invasion of urban forest by dengue vectors in Rio de Janeiro. J Vector Ecol 2004, 29:94-100.
  • [29]Anosike J, Nwoke B, Okere A, Oku E, Asor J, Emmy-Egbe I, Adimike D: Epidemiology of tree-hole breeding mosquitoes in the tropical rainforest of Imo State, south-east Nigeria. Ann Agric Environ Med: AAEM 2007, 14:31.
  • [30]Service MW: The ecology of the mosquitos of the Northern Guinea Savannah of Nigeria. Bull Entomological Res 1963, 54:601-632.
  • [31]Haddow A, Gillett J, Highton R: The mosquitoes of Bwamba County, Uganda; the vertical distribution and biting-cycle of mosquitoes in rain-forest, with further observations on microclimate. Bull Ent Res 1947, 37:301.
  • [32]Snow KR: Insects and disease. London, UK: Routledge & Kegan Paul Ltd; 1974. http://books.google.co.th/books/about/Insects_and_Disease.html?id=6t89AAAAIAAJ&redir_esc=y webcite
  • [33]Braack L, Coetzee M, Hunt R, Biggs H, Cornel A, Gericke A: Biting pattern and host-seeking behavior of Anopheles arabiensis (Diptera: Culicidae) in northeastern South Africa. J Med Entomol 1994, 31(3):333-339.
  • [34]Pattanavibool A, Edge WD: Single-tree selection silviculture affects cavity resources in mixed deciduous forests in Thailand. J Wildlife Manage 1996, 60(1):67-73. http://www.jstor.org/discover/10.2307/3802041?uid=3739136&uid=2129&uid=2&uid=70&uid=4& webcite sid=21101121194533
  • [35]Carlson A, Sandström U, Olsson K: Availability and use of natural tree holes by cavity nesting birds in a Swedish deciduous forest. Ardea 1998, 86:109-119.
  • [36]Derraik J, Snell A, Slaney D: Vertical distribution of adult mosquitoes in native forest in Auckland, New Zealand. J Vector Ecol 2005, 30(2):334.
  • [37]Downes J: The feeding habits of biting flies and their significance in classification. Ann Rev Entomol 1958, 3:249-266.
  • [38]Slansky Jr F, Rodriguez JG, et. al: Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley, New York: John Wiley; 1987. http: //books.google.co.th/books/about/Nutritional_ecology_of_insects_mites_spi.html?id=LZjwAAAAMAAJ&redir_esc=y
  • [39]Yuval B: The other habit: sugar feeding by mosquitoes. Bull Soc Vector Ecologists 1992, 17(2):150-156.
  • [40]Haeger J: The non-blood feeding habits of Aedes taeniorhynchus (Diptera, Culicidae) on Sanibel Island, Florida. Mosq News 1955, 15:21-26.
  • [41]Nielsen ET, Greve H: Studies on the swarming Habits of Mosquitos and other Nematocera. Bull Ent Res 1950, 41:227-258.
  • [42]Nasci R: Toxorhynchites rutilus septentrionalis feeding on tree sap. J Am Mosquito Control Assoc 1986, 2(4):559.
  • [43]PATTERSON BJDRT R S: SMITTLE: Feeding Habits of Male Southern House Mosquitoes1 on 32P-labeled and Unlabeled Plants2. J Economic Entomol 1969, 62(6):1455-1455.
  • [44]Joseph S, et. al: Fruit feeding of mosquitoes in nature. Proc New Jersey Mosquito Extermination Assoc 1970, 57:125-131.
  • [45]Abdel-Malek A, Baldwin W: Specificity of plant feeding in mosquitoes as determined by radioactive phosphorus. Nature 1961, 192:178-179.
  • [46]Müller G, Schlein Y: Plant tissues: the frugal diet of mosquitoes in adverse conditions. Med Veterinary Entomol 2005, 19(4):413-422.
  • [47]Knudsen A, et. al: Global distribution and continuing spread of Aedes albopictus. Parassitologia 1995, 37(2-3):91.
  • [48]Scholte E, Jacobs F, Linton Y, Dijkstra E, Fransen J, Takken W: First record of Aedes (Stegomyia) albopictus in the Netherlands. Eur Mosquito Bull 2007, 22:5-9.
  • [49]Yard and Garden: 2011 http: //ianrhome.unl.edu/c/document_library/get_file?p_l_id=4472532&folderId=341641&name=DLFE-45847.pdf
  • [50]Plummer R, Kulkarni R, Sethi A: Dengue fever: the fundamentals. J Pakistan Assoc Dermatologists 2009, 19:127-130.
  • [51]Wen T, Lin M, Fang C: Population Movement and Vector-Borne Disease Transmission: differentiating spatial–temporal diffusion patterns of commuting and noncommuting dengue cases. Ann Assoc Am Geographers 2012, 102(5):1026-1037.
  • [52]Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickrem W, Wai K, Tyagi B, Kroeger A, Sommerfeld J, Petzold M: Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organization 2010, 88(3):173-184.
  • [53]Kantachuvessirim A: Dengue hemorrhagic fever in Thai society. Southeast Asian J Trop Med Public Health 2002, 33(1):56-62. http://www.searo.who.int/LinkFiles/Dengue_Bulletin_Volume_25_shortnotes.pdf webcite
  • [54]Endy T, Nisalak A, Chunsuttiwat S, Libraty D, Green S, Rothman A, Vaughn D, Ennis F: Spatial and temporal circulation of dengue virus serotypes: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 2002, 156:52-59.
  • [55]Sharma R, Panigrahi N, Kaul S: Aedes aegypti prevalence in hospitals and schools, the Priority Sites for DHF Transmission in Delhi, India. Dengue Bull 2001, 25:107.
  • [56]Ricardo C, Maria D, Valmir A, Ana M, Celso S: Spatial distribution of the risk of dengue fever in southeast Brazil, 2006-2007. BMC Public Health 2011, 11(1):355. http://www.biomedcentral.com/content/pdf/1471-2458-11-355.pdf webcite BioMed Central Full Text
  • [57]FAQ’s on Mosquitos: Center for Vector Biology http://www.uri.edu/ce/factsheets/sheets/mosquito.html webcite
  • [58]Towards Sustainable Vector Control: Larvicides http://www.vectorcontrol.bayer.com/bayer/cropscience/bes_vectorcontrol.nsf/id/EN_Larvicides webcite
  • [59]Richards S, Ponnusamy L, Unnasch T, Hassan H, Apperson C: Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J Med Entomol 2006, 43(3):543.
  • [60]Infection illnesses in Southeast Asia http://expat.interglobal.com/2012/05/08/contagious-illnesses-in-southeast-asia webcite
  • [61]How is dengue fever transmitted? http://www.ehow.com/how-does_4599985_how-dengue-fever-transmitted.html webcite
  • [62]Mangudo C, Aparicio J, Gleiser R: Tree holes as larval habitats for Aedes aegypti in public areas in Aguaray, Salta province, Argentina. J Vector Ecol 2011, 36:227-230.
  • [63]Alcohol ingestion stimulates mosquito attraction http://www.secretlake.net/mosquitos.html webcite
  • [64]Lagrotta M, Silva W, Souza-Santos R: Identification of key areas for Aedes aegypti control through geoprocessing in Nova Iguaçu, Rio de Janeiro State, Brazil. Cadernos de Saúde Pública 2008, 24:70-80.
  • [65]Ivers L, Ryan E: Infectious diseases of severe weather-related and flood-related natural disasters. Curr Opin Infectious Diseases 2006, 19(5):408.
  • [66]Oliva O, Pan American Health Organization http://www.paho.org/English/dd/ped/te_vect.htm webcite
  文献评价指标  
  下载次数:88次 浏览次数:86次