期刊论文详细信息
BMC Developmental Biology
Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation
Paul Eckhard Witten2  Ann Huysseune2  Maria Leonor Cancela3  João Cardeira4  Anabela Bensimon-Brito1 
[1]Present address: CEDOC - Faculdade de Ciências Médicas, FCM Universidade Nova de Lisboa, Lisbon, Portugal
[2]Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
[3]Dept. of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
[4]Center of Marine Sciences - CCMar, University of Algarve, Faro, Portugal
关键词: Osteocalcin;    Notochord;    Vertebral fusion;    Vertebral column;   
Others  :  1086456
DOI  :  10.1186/1471-213X-12-28
 received in 2012-07-12, accepted in 2012-10-03,  发布年份 2012
PDF
【 摘 要 】

Background

In chondrichthyans, basal osteichthyans and tetrapods, vertebral bodies have cartilaginous anlagen that subsequently mineralize (chondrichthyans) or ossify (osteichthyans). Chondrocytes that form the vertebral centra derive from somites. In teleost fish, vertebral centrum formation starts in the absence of cartilage, through direct mineralization of the notochord sheath. In a second step, the notochord is surrounded by somite-derived intramembranous bone. In several small teleost species, including zebrafish (Danio rerio), even haemal and neural arches form directly as intramembranous bone and only modified caudalmost arches remain cartilaginous. This study compares initial patterns of mineralization in different regions of the vertebral column in zebrafish. We ask if the absence or presence of cartilaginous arches influences the pattern of notochord sheath mineralization.

Results

To reveal which cells are involved in mineralization of the notochord sheath we identify proliferating cells, we trace mineralization on the histological level and we analyze cell ultrastructure by TEM. Moreover, we localize proteins and genes that are typically expressed by skeletogenic cells such as Collagen type II, Alkaline phosphatase (ALP) and Osteocalcin (Oc). Mineralization of abdominal and caudal vertebrae starts with a complete ring within the notochord sheath and prior to the formation of the bony arches. In contrast, notochord mineralization of caudal fin centra starts with a broad ventral mineral deposition, associated with the bases of the modified cartilaginous arches. Similar, arch-related, patterns of mineralization occur in teleosts that maintain cartilaginous arches throughout the spine.

Throughout the entire vertebral column, we were able to co-localize ALP-positive signal with chordacentrum mineralization sites, as well as Collagen II and Oc protein accumulation in the mineralizing notochord sheath. In the caudal fin region, ALP and Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1).

Conclusions

If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.

【 授权许可】

   
2012 Bensimon-Brito et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116012110435.pdf 3967KB PDF download
Figure 7. 78KB Image download
Figure 6. 143KB Image download
Figure 5. 250KB Image download
Figure 4. 258KB Image download
Figure 3. 70KB Image download
Figure 2. 68KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Morin-Kensicki EM, Melancon E, Eisen JS: Segmental relationship between somites and vertebral column in zebrafish. Development 2002, 129:3851-3386.
  • [2]Grotmol S, Kryvi H, Nordvik K, Totland GK: Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol 2003, 207:263-272.
  • [3]Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, Pourquié O, Kusumi K, Dunwoodie S: Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn 2007, 236(6):1456-1474.
  • [4]Hall BK: Evolutionary consequences of skeletal differentiation. Am Zool 1975, 15:329-350.
  • [5]Kaplan KM, Spivak JM, Bendo JA: Embryology of the spine and associated congenital abnormalities. Spine J 2005, 5(5):564-576.
  • [6]Christ B, Huang R, Wilting J: The development of the avian vertebral column. Anat Embryol 2000, 202:179-194.
  • [7]Kahane N, Cinnamon Y, Kalcheim C: The origin and fate of pioneer myotomal cells in the avian embryo. Mech Dev 1998, 74:59-73.
  • [8]Christ B, Huang R, Scaal M: Formation and differentiation of the avian sclerotome. Anat Embryol 2004, 208:333-350.
  • [9]Stemple DL: Structure and function of the notochord: an essential organ for chordate development. Development 2005, 132:2503-2512.
  • [10]Grotmol S, Nordvik K, Kryvi H, Totland GK: A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies. J Anat 2005, 206:427-436.
  • [11]Schmitz RJ: Comparative ultrastructure of the cellular components of the unconstricted notochord in the sturgeon and the lungfish. J Morphol 1998, 236:75-104.
  • [12]Fleming A, Keynes R, Tannahill D: A central role for the notochord in vertebral patterning. Development 2004, 131:873-880.
  • [13]Huxley TH: Observations on the development of some parts of the skeleton of fishes. Q J Microsc Sci 1859, 7:33-46.
  • [14]François Y: Structure et développement de la vertèbre de Salmo et des téléostéens. Archives de Zoologie Experimentale et Generale 1966, 107:287-328.
  • [15]Bensimon-Brito A, Cancela ML, Huysseune A, Witten PE: Vestiges, rudiments and fusion events: the zebrafish caudal fin endoskeleton in an evo-devo perspective. Evol Dev 2012, 14(1):116-127.
  • [16]Arratia G, Schultze H-P, Casciotta J: Vertebral column and associated elements in Dipnoans and comparison with other fishes: Development and homology. J Morphol 2001, 250:101-172.
  • [17]Gavaia PJ, Simes DC, Ortiz-Delgado JB, Viegas CSB, Pinto JP, Kelsh RN, Sarasquete MC, Cancela ML: Osteocalcin and matrix Gla protein in zebrafish (Danio rerio) and Senegal sole (Solea senegalensis): Comparative gene and protein expression during larval development through adulthood. Gene Expr Patterns 2006, 6(6):637-652.
  • [18]Lauder GV: On the relationship of the myotome to the axial skeleton in vertebrate evolution. Paleobiology 1980, 6(1):51-56.
  • [19]Inohaya K, Takano Y, Kudo A: The Teleost intervertebral region acts as a growth center of the centrum: In vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 2007, 236:3031-3046.
  • [20]Willems B, Büttner A, Huysseune A, Renn J, Witten PE, Winkler C: Conditional ablation of osteoblasts in medaka. Dev Biol 2012, 364:128-137.
  • [21]Huysseune A, Takle H, Soenens M, Taerwe K, Witten PE: Unique and shared gene expression patterns in Atlantic salmon (Salmo salar) tooth development. Developmental Genes and Evolution 2008, 218:427-437.
  • [22]Pullig O, Weseloh G, Ronneberger D-L, Käkönen S-M, Swoboda B: Chondrocyte differentiation in Human osteoarthritis: Expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 2000, 67:230-240.
  • [23]Aizawa T, Roach HI, Kokubun S, Tanaka Y: Changes in the expression of Fas, osteonectin and osteocalcin with age in the rabbit growth plate. The Journal of Bone and Joint Surgery (Br) 1998, 80-B(5):880-887.
  • [24]Neugebauer BM, Monroe MA, Broess M, Gerstenfeld LC, Hauschka PV: Characterization of structural sequences in the chicken osteocalcin gene: Expression of osteocalcin by maturing osteoblasts and by hypertrophic chondrocytes in vitro. J Bone Miner Res 1995, 10(1):157-163.
  • [25]Laizé V, Viegas CSB, Price PA, Cancela ML: Identification of an osteocalcin isoform in fish with a large acidic prodomain. J Biol Chem 2006, 281(22):15037-15043.
  • [26]Fjelldal PG, Hansen T, Breck O, Ornsrud R, Lock EJ, Waagbø R, Wargelius A, Witten PE: Vertebral deformities in farmed Atlantic salmon (Salmo salar L.) – etiology and pathology. J Appl Ichthyol 2012, 28(3):433-440.
  • [27]Ward AB, Brainerd EL: Evolution of axial patterning in elongate fishes. Biol J Linn Soc 2007, 90:97-116.
  • [28]Wargelius A, Fjelldal PG, Hansen T: Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon (Salmo salar). Dev Genes Evol 2005, 215(7):350-357.
  • [29]Bird NC, Hernandez LP: Building an evolutionary innovation: differential growth in the modified vertebral elements of the zebrafish Weberian apparatus. Zoology 2009, 112(2):97-112.
  • [30]Ferreri F, Nicolais C, Boglione C, Bertolini B: Skeletal characterization of wild and reared zebrafish: anomalies and meristic characters. J Fish Biol 2000, 56(5):1115-1128.
  • [31]Bird NC, Mabee PM: Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 2003, 228(3):337-357.
  • [32]Bensimon-Brito A, Cancela ML, Huysseune A, Witten PE: The zebrafish (Danio rerio) caudal complex: a model to study vertebral body fusion. J Appl Ichthyol 2010, 26(2):235-238.
  • [33]Witten PE, Obach A, Huysseune A, Baeverfjord G: Vertebrae fusion in Atlantic salmon (Salmo salar): development, aggravation and pathways of containment. Aquaculture 2006, 258(1–4):164-172.
  • [34]Fjelldal PG, Nordgarden U, Wargelius A, Taranger GL, Waagbø R, Olsen RE: Effects of vegetable feed ingredients on bone health in Atlantic salmon. J Appl Ichthyol 2010, 26(2):327-333.
  • [35]Ekanayake S, Hall BK: The development of acellularity of the vertebral bone of the Japanese Medaka, Oryzias latipes (Teleostei; Cyprinidontidae). J Morphol 1987, 193:253-261.
  • [36]Simes DC, Williamson MK, Schaff BJ, Gavaia PJ, Ingleton PM, Price PA, Cancela ML: Characterization of osteocalcin (BGP) and matrix gla protein (MGP) fish specific antibodies: validation for immunodetection studies in lower vertebrates. Calcif Tissue Int 2004, 74:170-180.
  • [37]Du SJ, Frenkel V, Kindschi G, Zohar Y: Visualizing normal and defective bone development in Zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 2001, 238:239-246.
  • [38]Nordvik K, Kryvi H, Totland GK, Grotmol S: The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J Anat 2005, 206:103-114.
  • [39]Kölliker A: Weitere Beobachtungen über die Wirbel der Selachier, insbesondere über die Wirbel der Lamnoidei, nebst allgemeinen Bemerkungen über die Bildung der Wirbel der Plagiostomen. Frankfurt: Verlag HL. Bröuner; 1863.
  • [40]Hibiya K, Katsumoto T, Kondo T, Kitabayashi I, Kudo A: Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev Biol 2009, 329:176-190.
  • [41]Laerm J: The origin and homology of the chondrostean vertebral centrum. Can J Zool 1979, 57(3):475-485.
  • [42]Schultze H-P, Arratia G: Reevaluation of the caudal skeleton of some actinopterygian fishes: II. Hiodon, Elops, and Albula. J Morphol 1988, 195(3):257-303.
  • [43]Koumoundouros G, Sfakianakis DG, Maingot E, Divanach P, Kentouri M: Osteological development of the vertebral column and of the fins in Diplodus sargus (Teleostei: Perciformes: Sparidae). Mar Biol 2001, 139:853-862.
  • [44]van Eeden FJM, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg C-P, Jiang Y-J, Kane DA, et al.: Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 1996, 123:153-164.
  • [45]Fleming A, Keynes RJ, Tannahill D: The role of the notochord in vertebral column formation. J Anat 2001, 199(1–2):177-180.
  • [46]Nishimoto SK, Waite JH, Nishimoto M, Kriwacki RW: Structure, activity, and distribution of fish osteocalcin. J Biol Chem 2003, 278(14):11843-11848.
  • [47]Simes DC, Williamson MK, Ortiz-Delgado JB, Viegas CSB, Price PA, Cancela ML: Purification of Matrix Gla Protein from a marine teleost fish, Argyrosomus regius: Calcified cartilage and not bone as the primary site of MGP accumulation in fish. J Bone Miner Res 2003, 18(2):244-259.
  • [48]Ytteborg E, Togersen J, Baeverfjord G, Takle H: Morphological and molecular characterization of developing vertebral fusions using a teleost model. BMC Physiol 2010, 10(13):1-15.
  • [49]Krossøy C, Ornsrud R, Wargelius A: Differential gene expression of bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar L.) verebrae. J Anat 2009, 215:663-672.
  • [50]Pinto JP, Ohresser MCP, Cancela ML: Cloning of the bone Gla protein gene from the teleost fish Sparus aurata. Evidence for overall conservation in gene organization and bone-specific expression from fish to man. Gene Expr Patterns 2001, 270:77-91.
  • [51]Desbois C, Hogue DA, Karsenty G: The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 1994, 269:1183-1190.
  • [52]Renn J, Winkler C: Characterization of collagen type 10a1 and osteocalcin in early and mature osteoblasts during skeleton formation in medaka. J Appl Ichthyol 2010, 26:196-201.
  • [53]Lie KK, Moren M: Retinoic acid induces two osteocalcin isoforms and inhibits markers of osteoclast activity in Atlantic cod (Gadus morhua) ex vivo cultured craniofacial tissues. Comparative Biochemistry and Physiology, Part A 2012, 161:174-184.
  • [54]Confavreux CB, Levine RL, Karsenty G: A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol 2009, 310:21-29.
  • [55]Ferron M, Hinoi E, Karsenty G, Ducy P: Osteocalcin differentially regulates cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences USA 2009, 105(13):5266-5270.
  • [56]Westerfield M: The zebrafish book. A guide for the laboratory use of zebrafish Danio rerio. 4th edition. Eugene: University of Oregon Press; 2000.
  • [57]Connolly MH, Yelick PC: High-throughput methods for visualizing the teleost skeleton: capturing autofluorescence of alizarin red. J Appl Ichthyol 2010, 26:274-277.
  • [58]Huysseune A, Sire JY: Development of cartilage and bone tissues of the anterior part of the mandible in cichlid fish: a light and TEM study. Anat Rec 1992, 233:357-375.
  • [59]Witten PE, Hansen A, Hall BK: Features of mono and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling and growth. J Morphol 2001, 250:197-207.
  • [60]Schenk RK, Olah AJ, Herrmann W: Preparation of calcified tissues for light microscopy. In Methods of Calcified Tissue Preparation. Edited by Dickson GR. Amsterdam: Elsevier; 1984:1-56.
  • [61]Miyake T, Cameron AM, Hall BK: Stagespecific expression patterns of alkaline phosphatase during development of the first arch skeleton in inbred C57BL/6 mouse embryos. J Anat 1997, 190:239-260.
  • [62]Ortego LS, Hawkins WE, Walker WW, Krol RM, Benson WH: Detection of Proliferating Cell Nuclear antigen in tissues of three small fish species. Biotech Histochem 1994, 69(6):317-323.
  • [63]Verstraeten B, Sanders E, Huysseune A: Whole Mount Immunohistochemistry and In Situ Hybridization of Larval and Adult Zebrafish Dental Tissues. In: Methods Mol Biol. vol. 2012, 887:179-191.
  • [64]Clément A, Wiweger M, Hardt S, Rusch MA, Selleck SB, Chien C-B, Roehl HH, et al.: Regulation of Zebrafish Skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 2008, 4:e1000136.
  • [65]Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, et al.: Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 2011, 20:713-724.
  • [66]Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156-159.
  • [67]Tang R, Dodd A, Lai D, Mcnabb WC, Love DR: Validation of Zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin 2007, 39(5):384-390.
  • [68]Nybelin O: Zur morphologie und terminologie des schwanzskelettes der Actinopterygier. Arkiv fur Zoologi 1963, 15:485-516.
  • [69]Patterson C: The caudal skeleton in Lower Liassic pholidophorid fishes. Bulletin of the British Museum (Natural History) Geology 1968, 16(5):201-239.
  • [70]Arratia G, Schultze H-P: Reevaluation of the caudal skeleton of certain actinopterygian fishes. III. Salmonidae. Homologization of caudal skeletal structures. J Morphol 1992, 214:187-249.
  文献评价指标  
  下载次数:19次 浏览次数:9次