期刊论文详细信息
BMC Evolutionary Biology
Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed by gene locations on homoeologous chromosomes
Chunji Liu1  Jaroslav Doležel3  Guijun Yan1  You-Liang Zheng2  Yuming Wei2  Zhi Zheng1  Jiri Stiller4  Jian Ma4 
[1] School of Plant Biology, The University of Western Australia, Perth 6009, WA, Australia;Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China;Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc, CZ-78371, Czech Republic;CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia 4067, QLD, Australia
关键词: Chinese Spring;    Comparative genomics;    Translocation;    Wheat genome;    Interchromosomal rearrangements;   
Others  :  1158290
DOI  :  10.1186/s12862-015-0313-5
 received in 2014-11-05, accepted in 2015-02-20,  发布年份 2015
PDF
【 摘 要 】

Background

Chromosomal rearrangements are a major driving force in shaping genome during evolution. Previous studies show that translocated genes could undergo elevated rates of evolution and recombination frequencies around these genes can be altered. Based on the recently released genome sequences of Triticum urartu, Aegilops tauschii, Brachypodium distachyon and bread wheat, an analysis of interchromosomal translocations in the hexaploid wheat genotype ‘Chinese Spring’ (‘CS’) was conducted based on chromosome shotgun sequences from individual chromosome arms of this genotype.

Results

A total of 720 genes representing putative interchromosomal rearrangements was identified. They were distributed across the 42 chromosome arms. About 59% of these translocated genes were those involved in the well-characterized translocations involving chromosomes 4A, 5A and 7B. The other 41% of the genes represent a large numbers of putative interchromosomal rearrangements which have not yet been described. The number of the putative translocation events in the D subgenome was about half of those presented in either the A or B subgenomes, which agreed well with that the times of interaction between the A and B subgenomes almost doubled that between either of them and the D subgenome.

Conclusions

The possible existence of a large number of interchromosomal rearrangements detected in this study provide further evidence that caution should be taken when using synteny in ordering sequence contigs or in cloning genes in hexaploid wheat. The identification of these putative translocations in ‘CS’ also provide a base for a systematic evaluation of their presence or absence in the full spectrum of bread wheat and its close relatives, which could have significant implications in a wide array of fields ranging from studies of systematics and evolution to practical breeding.

【 授权许可】

   
2015 Ma et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150408012602637.pdf 656KB PDF download
Figure 3. 33KB Image download
Figure 2. 35KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Brown JD, O’Neill RJ: Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 2010, 11:291-316.
  • [2]Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, et al.: The dynamics of chromosome evolution in birds and mammals. Nature 1999, 402(6760):411-2.
  • [3]Colson I, Delneri D, Oliver SG: Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Rep 2004, 5(4):392-8.
  • [4]Morrow JD, Cooper VS: Evolutionary effects of translocations in bacterial genomes. Genome Biol Evol 2012, 4(12):1256-62.
  • [5]Sankoff D, Nadeau JH: Chromosome rearrangements in evolution: From gene order to genome sequence and back. Proc Natl Acad Sci U S A 2003, 100(20):11188-9.
  • [6]Hao W, Golding GB: Does gene translocation accelerate the evolution of laterally transferred genes? Genetics 2009, 182(4):1365-75.
  • [7]Law C, Worland A: The control of adult‐plant resistance to yellow rust by the translocated chromosome 5BS‐7BS of bread wheat. Plant Breed 1997, 116(1):59-63.
  • [8]Liu C, Atkinson M, Chinoy C, Devos K, Gale M: Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor Appl Genet 1992, 83(3):305-12.
  • [9]Devos K, Dubcovsky J, Dvořák J, Chinoy C, Gale M: Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 1995, 91(2):282-8.
  • [10]Nelson JC, Sorrells ME, Van-Deynze A, Lu YH, Atkinson M, Bernard M, et al.: Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 1995, 141(2):721.
  • [11]King I, Purdie K, Liu C, Reader S, Pittaway T, Orford S, et al.: Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome 1994, 37(5):882-7.
  • [12]Riley R, Coucoli H, Chapman V: Chromosomal interchanges and the phylogeny of wheat. Heredity 1967, 22:233-48.
  • [13]Belay G, Merker A: Cytogenetic analysis of a spontaneous 5B/6B translocation in tetraploid wheat landraces from Ethiopia, and implications for breeding. Plant Breed 1998, 117(6):537-42.
  • [14]Naranjo T, Roca A, Goicoechea P, Giraldez R: Arm homoeology of wheat and rye chromosomes. Genome 1987, 29(6):873-82.
  • [15]Valárik M, Bartoš J, Kovářová P, Kubaláková M, De Jong J, Doležel J: High‐resolution FISH on super‐stretched flow‐sorted plant chromosomes. Plant J 2004, 37(6):940-50.
  • [16]Danilova TV, Friebe B, Gill BS: Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 2014, 127(3):715-30.
  • [17]Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al.: Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 2013, 496:87-90.
  • [18]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al.: Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013, 496:91-5.
  • [19]Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, et al.: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463(7282):763-8.
  • [20]International-Wheat-Genome-Sequencing-Consortium: A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome Science 2014, 345:1251788.
  • [21]Ma J, Stiller J, Berkman PJ, Wei Y, Rogers J, Feuillet C, et al.: Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS One 2013, 8(11):e79329.
  • [22]Ma J, Stiller J, Wei Y, Zheng Y-L, Devos KM, Doležel J, et al.: Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed from chromosome shotgun sequence data. Genome Biol Evol 2014, 6(11):3039-48.
  • [23]Qi L, Friebe B, Gill BS: Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae. Genome 2006, 49(12):1628-39.
  • [24]Mickelson-Young L, Endo T, Gill B: A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 1995, 90(7):1007-11.
  • [25]Ross K, Ma XF, Mahmoud A, Layton J, Milla MAR, et al.: Miftahudin: Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 2004, 168(2):651-63.
  • [26]Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, et al.: Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 2004, 168(4):2169-85.
  • [27]Galvão VC, Nordström KJ, Lanz C, Sulz P, Mathieu J, Posé D, et al.: Synteny‐based mapping‐by‐sequencing enabled by targeted enrichment. Plant J 2012, 71(3):517-26.
  • [28]Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, et al.: Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 2004, 134(2):183-91.
  • [29]Grant D, Cregan P, Shoemaker RC: Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci U S A 2000, 97(8):4168-73.
  • [30]Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, et al.: Transcript‐specific, single‐nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 2011, 9(9):1086-99.
  • [31]Cadalen T, Boeuf C, Bernard S, Bernard M: An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 1997, 94(3–4):367-77.
  • [32]Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al.: Ancient hybridizations among the ancestral genomes of bread wheat. Science 2014, 345(6194):1250092.
  • [33]Miller T: Systematics and evolution. In Wheat breeding: its scientific basis. Chapman and Hall, London; 1987:1-30.
  • [34]Conley E, Nduati V, Gonzalez-Hernandez J, Mesfin A, Trudeau-Spanjers M, Chao S, et al.: A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 2004, 168(2):625-37.
  • [35]Linkiewicz A, Qi L, Gill B, Ratnasiri A, Echalier B, Chao S, et al.: A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 2004, 168(2):665-76.
  文献评价指标  
  下载次数:33次 浏览次数:8次