期刊论文详细信息
BMC Cardiovascular Disorders
Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model
Jiyuan Tu2  Zhonghua Sun1  Sherman CP Cheung2  Pongpat Thavornpattanapong2  Kelvin KL Wong2 
[1] Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Australia;School of Aerospace, Mechanical and Manufacturing Engineering, and Health Innovations Research Institute (HIRi), RMIT University, Australia
关键词: plaque rupture;    lipids;    fibrous cap;    calcification;    atherosclerosis;   
Others  :  1085341
DOI  :  10.1186/1471-2261-12-7
 received in 2011-10-18, accepted in 2012-02-15,  发布年份 2012
PDF
【 摘 要 】

Background

This study characterizes the distribution and components of plaque structure by presenting a three-dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and calcium distribution in lipids influence the biomechanical stress on the plaque.

Method

Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its vulnerability.

Results

Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights and methodologically sound data to investigate plaque rupture mechanics.

Conclusion

Structural analysis using a three-dimensional calcified model represents a more realistic simulation of late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a decrease in lipid core volume can stabilize plaque structurally.

【 授权许可】

   
2012 Wong et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172504334.pdf 7882KB PDF download
Figure 14. 29KB Image download
Figure 13. 31KB Image download
Figure 12. 46KB Image download
Figure 11. 48KB Image download
Figure 10. 212KB Image download
Figure 9. 125KB Image download
Figure 8. 34KB Image download
Figure 7. 52KB Image download
Figure 6. 55KB Image download
Figure 5. 42KB Image download
Figure 4. 210KB Image download
Figure 3. 55KB Image download
Figure 2. 52KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

【 参考文献 】
  • [1]O'Rourke R, Brundage B, Froelicher V, Greenland P, Grundy S, Hachamovitch R, Pohost G, Shaw L, Weintraub W, Winters W: American college of cardiology/American heart association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 2000, 102:126-140.
  • [2]Schuijf J, Beck T, Burgstahler C, Jukema J, Dirksen M, de Roos A, van der Wall E, Schroeder S, Wijns W, Bax J: Differences in plaque composition and distribution in stable coronary artery disease versus acute coronary syndromes; non-invasive evaluation with multi-slice computed tomography. Acute Card Care 2007, 9:48-53.
  • [3]Meijboom W, Meijs M, Schuijf J, Cramer M, Mollet N, van Mieghem C, Nieman K, van Werkhoven J, Pundziute G, Weustink A, et al.: Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective multicenter, multivendor study. J Am Coll Cardiol 2008, 52:2135-2144.
  • [4]Takumi T, Lee S, Hamasaki S, Toyonaga K, Kanda D, Kusumoto K, Toda H, Takenaka T, Miyata M, Anan R, et al.: Limitation of angiography to identify the culprit plaque in acutemyocardial infarction with coronary total occlusion. J Am Coll Cardiol 2007, 50:2197-2203.
  • [5]Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, Dohi Y, Kunita E, Utsunomiya H, Kohno N, et al.: Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. J Am Coll Cardiol Img 2009, 2:153-160.
  • [6]Harada K, Amano T, Uetani T, Funahashi H, Arai K, Okada K, Hirashiki A, Hayashi M, Oshima S, Ishii H, et al.: Accuracy of 64-slice multidetector computed tomography for classification and quantitation of coronary plaque: Comparison with integrated backscatter intravascular ultrasound. Int J Cardiol 2010, 149(1):95-101.
  • [7]Yuan C, Mitsumori L, Beach K, Maravilla K: Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnearable lesions. Radiology 2001, 221:285-299.
  • [8]Yuan C, Mitsumori L, Ferguson M, Polissar N, Echelard D, Ortiz G, Small R, Davies J, Kerwin W, Hatsukami T: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001, 104(17):2051-2056.
  • [9]Helft G, Worthley S, Fuster V, Zaman A, Fayad Z, Osende J, Fallon J, Badimon J: Serial noninvasive magnetic resonance imaging documents progression and regression of individual plaques. Circulation 2002, 105:993-998.
  • [10]Fuessl R, Kranenberg E, Kiausch U, Baer F, Sechtem U, Höpp H: Vascular remodeling in atherosclerotic coronary arteries is affected by plaque composition. Coron Artery Dis 2001, 12:91-97.
  • [11]Chandran K, Mun J, Choi K, Chen J, Hamilton A, Nagaraj A, McPherson D: A method for invivo analysis for regional arterial wall material property alterations with atherosclerosis: preliminary results. Medical Engineering & Physics 2003, 25(4):289-298.
  • [12]Sabaté M, Kay I, de Feyter P, van Domburg R, Deshpande N, Ligthart J, Gijzel A, Wardeh A, Boersma E, Serruys P: Remodeling of atherosclerotic coronary arteries varies in relation to location and composition of plaque. Am J Cardiol 1999, 84:135-140.
  • [13]Sun Z, Dimpudus F, Adipranoto J, Nugroho J: CT virtual intravascular endoscopy assessment of coronary artery plaques: A preliminary study. Eur J Radiol 2010, 75(1):e112-e119.
  • [14]Stary H: Atlas of Atherosclerosis - Progression and regression. 2nd edition. New York, USA: The Parthenon Publishing Group; 2003.
  • [15]Hodgson J, Reddy K, Suneja R, Nair R, Lesnefsky E, Sheehan H: Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993, 21:35-44.
  • [16]Burke A, Kolodgie F, Farb A, Weber D, Virmani R: Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002, 105:297-303.
  • [17]Varnava A, Mills P, Davies M: Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002, 105:939-943.
  • [18]Holzapfel G, Stadler M, Schulze-Bauer C: A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 2002, 30(6):753-767.
  • [19]Steinman D: Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 2002, 30(4):483-497.
  • [20]Tang D, Yang C, Zheng J, Woodard P, Saffitz J, Petruccelli J, Sicard G, Yuan C: Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng 2005, 33(12):1789-1801.
  • [21]Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami T, Yuan C: A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: In vivo MRI-based 2D/3D FSI models. J Biomech 2008, 41(4):727-736.
  • [22]Tang D, Yang C, Kobayashi S, Ku D: Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. Journal of Biomechanical Engineering 2004, 126:363-370.
  • [23]Tang D, Yang C, Zheng J, Woodard P, Sicard G, Saffitz J, Yuan C: 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 2004, 32(7):947-960.
  • [24]Kaazempur-Mofrad M, Isasi A, Younis H, Chan R, Hinton D, Sukhova G, LaMuraglia G, Lee R, Kamm R: Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann Biomed Eng 2004, 32(7):932-946.
  • [25]Li Z, Howarth S, Tang T, Graves M, U-King-Im J, Trivedi R, Kirkpatrick P, Gillard J: Structural analysis and magnetic resonance imaging predict plaque vulnerability: A study comparing symptomatic and asymptomatic individuals. Journal of Vascular Surgery 2007, 45(4):768-775.
  • [26]Long Q, Xu X, Ariff B, Thom S, Hughes A, Stanton A: Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J Magn Reson Imaging 2000, 11(3):299-311.
  • [27]Groen H, Gijsen F, van der Lugt A, Ferguson M, Hatsukami T, van der Steen A, Yuan C, Wentzel J: Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 2007, 38:2379-2381.
  • [28]Williamson S, Lam Y, Younis H, Huang H, Patel S, Kaazempur-Mofrad M, Kamm R: On the sensitivity of wall stresses in diseased arteries to variable material properties. Journal of Biomechanical Engineering 2003, 125:147-155.
  • [29]Kerwin W, Xu D, Liu F, Saam T, Underhill H, Takaya N, Chu B, Hatsukami T, Yuan C: Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging 2007, 18(5):371-378.
  • [30]Loree H, Kamm R, Stringfellow R, Lee R: Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992, 71(4):850-858.
  • [31]Kiousis D, Rubinigg S, Auer M, Holzapfel G: A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: The human atherosclerotic carotid bifurcation as an illustratory example. J Biomech Eng 2009, 131(12):121002.
  • [32]Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilchrist L, Weinbaum S: A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci 2006, 103(40):14678-14683.
  • [33]Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta J, Einav S: Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 2008, 41(5):1111-1118.
  • [34]Wenk J, Papadopoulos P, Zohdi T: Numerical Modeling of Stress in Stenotic Arteries With Microcalcifications: A Micromechanical Approximation. J Biomech Eng 2010, 132(9):091011.
  • [35]Huang H, Virmani R, Younis H, Burke A, Kamm R, Lee R: The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001, 103:1051-1056.
  • [36]Cheng G, Loree H, Kamm R, Fishbein M, Lee R: Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 1993, 87:1179-1187.
  • [37]Tang D, Yang C, Zheng J, Woodard P, Saffitz J, Sicard G, Pilgram T, Yuan C: Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomech Eng 2005, 127(7):1185-1194.
  • [38]Li Z, Howarth S, Tang T, Gillard J: How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 2006, 37:1195.
  • [39]Beaussier H, Masson I, Collin C, Bozec E, Laloux B, Calvet D, Zidi M, Boutouyrie P, Laurent S: Carotid plaque, arterial stiffness gradient, and remodeling in hypertension. Hypertension 2008, 52:729.
  • [40]Gertz S, Roberts W: Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol 1990, 66:1368-1372.
  • [41]Loree H, Kamm R, Atkinson C, Lee R: Turbulent pressure fluctuations on surface of model vascular stenoses. Am J Physiol Heart Circ Physiol 1991, 261:H644-H650.
  • [42]Richardson P, Davies M, Born G: Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989, 2:941-944.
  • [43]Davies M, Richardson P, Woolf N, Katz D, Mann J: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993, 69(5):377-381.
  • [44]Moreno P, Falk E, Palacios I, Newell J, Fuster V, Fallon J: Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994, 90:775-778.
  • [45]Fayad Z, Fuster V: Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circulation Research 2001, 89:305-316.
  • [46]Burke A, Farb A, Malcom G, Liang Y, Smialek J, Virmani R: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997, 336:1276-1282.
  • [47]Tada T: A Computational Study of Flow in a Compliant Carotid Bifurcation-Stress Phase Angle Correlation with Shear Stress. Ann Biomed Eng 2005, 33(9):1202-1212.
  • [48]Salzar R, Thubrikar M, Eppink R: Pressure-induced mechanical stress in the carotid artery bifurcation: A possible correlation to atherosclerosis. Journal of Biomechanics 1995, 28(11):1333-1340.
  • [49]Thubrikar M, Robicsek F: Pressure-Induced Arterial Wall Stress and Atherosclerosis. Ann Thorac Surg 1995, 59(6):1594-1603.
  • [50]Beattie D, Xu C, Vito R, Glagov S, Whang M: Mechanical analysis of heterogeneous, atherosclerotic human aorta. J Biomech Eng 1998, 120(5):602-607.
  • [51]Loree H, Grodzinsky A, Park S, Gibson L, Lee R: Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech Eng 1994, 27(2):195-204.
  • [52]Lendon C, Davies M, Born G, Richardson P: Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991, 87(1):87-90.
  文献评价指标  
  下载次数:125次 浏览次数:49次