期刊论文详细信息
BMC Structural Biology
Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: Homology modelling and molecular dynamic studies
Junaid Gamieldien2  Burtram Fielding1  Michael Berry2 
[1] Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa;South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa
关键词: Molecular dynamics;    Homology modelling;    3CLpro;    OC43;    Human coronavirus;   
Others  :  1177512
DOI  :  10.1186/s12900-015-0035-3
 received in 2014-11-17, accepted in 2015-04-02,  发布年份 2015
PDF
【 摘 要 】

Background

The coronavirus 3 chymotrypsin-like protease (3CLpro) is a validated target in the design of potential anticoronavirus inhibitors. The high degree of homology within the protease’s active site and substrate conservation supports the identification of broad spectrum lead compounds. A previous study identified the compound ML188, also termed 16R, as an inhibitor of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) 3CLpro. This study will detail the generation of a homology model of the 3CLpro of the human coronavirus OC43 and determine the potential of 16R to form a broad-spectrum lead compound. MODELLER was used to generate a suitable three-dimensional model of the OC43 3CLpro and the Prime module of Schrӧdinger predicted the binding conformation and free energy of binding of 16R within the 3CLpro active site. Molecular dynamics further confirmed ligand stability and hydrogen bonding networks.

Results

A high quality homology model of the OC43 3CLpro was successfully generated in an active conformation. Further studies reproduced the binding pose of 16R within the active site of the generated model, where its free energy of binding was shown to equal that of the 3CLpro of SARS-CoV, a receptor it is experimentally proven to inhibit. The stability of the ligand was subsequently confirmed by molecular dynamics.

Conclusion

The lead compound 16R may represent a broad-spectrum inhibitor of the 3CLpro of OC43 and potentially other coronaviruses. This study provides an atomistic structure of the 3CLpro of OC43 and supports further experimental validation of the inhibitory effects of 16R. These findings further confirm that the 3CLpro of coronaviruses can be inhibited by broad spectrum lead compounds.

【 授权许可】

   
2015 Berry et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150501020015616.pdf 3842KB PDF download
Figure 9. 52KB Image download
Figure 8. 26KB Image download
Figure 7. 111KB Image download
Figure 6. 73KB Image download
Figure 5. 39KB Image download
Figure 4. 78KB Image download
Figure 3. 65KB Image download
Figure 2. 42KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Pene F, Merlat A, Vabret A, Rozenberg F, Buzyn A, Dreyfus F, et al.: Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 2003, 37(7):929-932.
  • [2]Woo PC, Lau SK, Tsoi H-w, Huang Y, Poon RW, Chu C-m, et al.: Clinical and molecular epidemiological features of coronavirus HKU1–associated community-acquired pneumonia. J Infect Dis 2005, 192(11):1898-1907.
  • [3]Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F: An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis 2003, 36(8):985-989.
  • [4]Lau SKP, Woo PCY, Yip CCY, Tse H, Tsoi H, Cheng VCC, et al.: Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong. J Clin Microbiol 2006, 44(6):2063-2071.
  • [5]Gorse GJ, O’Connor TZ, Hall SL, Vitale JN, Nichol KL: Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease. J Infect Dis 2009, 199(6):847-857.
  • [6]Jean A, Quach C, Yung A, Semret M: Severity and outcome associated with human coronavirus OC43 infections among children. Pediatr Infect Dis J 2013, 32(4):325-329.
  • [7]Ramajayam R, Tan KP, Liu HG, Liang PH: Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease. Bioorg Med Chem Lett 2010, 20(12):3569-3572.
  • [8]Yang H, Bartlam M, Rao Z: Drug Design targeting the main protease, the Achilles heel of Coronaviruses. Curr Pharm Des 2006, 12(35):4573-4590.
  • [9]Pyrc K, Berkhout B, van der Hoek L: The novel human coronaviruses NL63 and HKU1. J Virol 2007, 81(7):3051-3057.
  • [10]Ziebuhr J: The coronavirus replicase. Coronavirus replication and reverse genetics. Springer Berlin Heidelberg, 2005. 57-94.
  • [11]Gao F, Ou H-Y, Chen L-L, Zheng W-X, Zhang C-T: Prediction of proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes. FEBS Lett 2003, 553(3):451-456.
  • [12]Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha SA, Chase P, et al.: Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J Med Chem 2013, 56(2):534-546.
  • [13]Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al.: Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005., 3(10) Article ID e324
  • [14]Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, et al.: Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J Biol Chem 2009, 284(12):7646-7655.
  • [15]Zhao Q, Li S, Xue F, Zou Y, Chen C, Bartlam M, et al.: Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. J Virol 2008, 82(17):8647-8655.
  • [16]Hegyi A, Ziebuhr J: Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 2002, 83(3):595-599.
  • [17]Chuck C-P, Chow H-F, Wan DC-C, Wong K-B: Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses. PLoS One 2011., 6(11) Article ID e27228
  • [18]Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R: Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003, 300(5626):1763-1767.
  • [19]Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, et al.: Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol 2008, 82(5):2515-2527.
  • [20]Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, et al.: Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 2005, 280(35):31257-31266.
  • [21]Ziebuhr J, Snijder EJ, Gorbalenya AE: Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000, 81(4):853-879.
  • [22]Šali A, Overington JP: Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 1994, 3(9):1582-1596.
  • [23]Šali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234(3):779-815.
  • [24]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22(2):195-201.
  • [25]Costanzi S: On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the β2-adrenergic receptor. J Med Chem 2008, 51(10):2907-2914.
  • [26]Wu CG, Cheng SC, Chen SC, Li JY, Fang YH, Chen YH, et al.: Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease. Acta Crystallogr D Biol Crystallogr 2013, 69(Pt 5):747-755.
  • [27]Zheng K, Ma G, Zhou J, Zen M, Zhao W, Jiang Y, et al.: Insight into the activity of SARS main protease: Molecular dynamics study of dimeric and monomeric form of enzyme. Proteins 2007, 66(2):467-479.
  • [28]Ni H, Sotriffer CA, McCammon JA: Ordered water and ligand mobility in the HIV-1 integrase-5CITEP complex: a molecular dynamics study. J Med Chem 2001, 44(19):3043-3047.
  • [29]Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M: The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 1995, 16(3):273-284.
  • [30]MacKerell AD, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field MJ, et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998, 102(18):3586-3616.
  • [31]My S, Šali A: Statistical potential for assessment and prediction of protein structures. Protein Sci 2006, 15(11):2507-2524.
  • [32]DeLano WL: The PyMOL molecular graphics system. 2002.
  • [33]Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35(suppl 2):W407-W410.
  • [34]Sippl MJ: Recognition of errors in three‐dimensional structures of proteins. Proteins: Struct, Funct, Bioinf 1993, 17(4):355-362.
  • [35]Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26(2):283-291.
  • [36]Laskowski R, MacArthur M, Moss D, Thornton J: PROCHECK: A program to produce both detailed and schematic plots of proteins. J Appl Crystallogr 1993, 24:946-956.
  • [37]Jorgensen WL, Maxwell DS, Tirado-Rives J: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996, 118(45):11225-11236.
  • [38]Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W: Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Computation 2010, 6(5):1509-1519.
  • [39]Jacobson MP, Friesner RA, Xiang Z, Honig B: On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 2002, 320(3):597-608.
  • [40]Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, et al.: A hierarchical approach to all‐atom protein loop prediction. Proteins: Struct, Funct, Bioinf 2004, 55(2):351-367.
  • [41]Zoete V, Cuendet MA, Grosdidier A, Michielin O: SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 2011, 32(11):2359-2368.
  • [42]Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG: A smooth particle mesh Ewald method. J Chem Physics 1995, 103(19):8577-8593.
  文献评价指标  
  下载次数:37次 浏览次数:6次