期刊论文详细信息
BMC Neuroscience
Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex
Miguel Garzón1  Esther Del Cid-Pellitero1 
[1] Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
关键词: GABA;    Dopamine;    Wakefulness;    Ultrastructure;    Sleep;    Cortical activation;   
Others  :  1091139
DOI  :  10.1186/1471-2202-15-105
 received in 2014-06-14, accepted in 2014-08-28,  发布年份 2014
PDF
【 摘 要 】

Background

Hypocretins/orexins (Hcrt/Ox) are hypothalamic neuropeptides involved in sleep-wakefulness regulation. Deficiency in Hcrt/Ox neurotransmission results in the sleep disorder narcolepsy, which is characterized by an inability to maintain wakefulness. The Hcrt/Ox neurons are maximally active during wakefulness and project widely to the ventral tegmental area (VTA). A dopamine-containing nucleus projecting extensively to the cerebral cortex, the VTA enhances wakefulness. In the present study, we used retrograde tracing from the medial prefrontal cortex (mPFC) to examine whether Hcrt1/OxA neurons target VTA neurons that could sustain behavioral wakefulness through their projections to mPFC.

Results

The retrograde tracer Fluorogold (FG) was injected into mPFC and, after an optimal survival period, sections through the VTA were processed for dual immunolabeling of anti-FG and either anti-Hcrt1/OxA or anti-TH antisera. Most VTA neurons projecting to the mPFC were located in the parabrachial nucleus of the ipsilateral VTA and were non-dopaminergic. Only axonal profiles showed Hcrt1/OxA-immunoreactivity in VTA. Hcrt1/OxA reactivity was observed in axonal boutons and many unmyelinated axons. The Hcrt1/OxA immunoreactivity was found filling axons but it was also observed in parts of the cytoplasm and dense-core vesicles. Hcrt1/OxA-labeled boutons frequently apposed FG-immunolabeled dendrites. However, Hcrt1/OxA-labeled boutons rarely established synapses, which, when they were established, were mainly asymmetric (excitatory-type), with either FG-labeled or unlabeled dendrites.

Conclusions

Our results provide ultrastructural evidence that Hcrt1/OxA neurons may exert a direct synaptic influence on mesocortical neurons that would facilitate arousal and wakefulness. The paucity of synapses, however, suggest that the activity of VTA neurons with cortical projections might also be modulated by Hcrt1/OxA non-synaptic actions. In addition, Hcrt1/OxA could modulate the postsynaptic excitatory responses of VTA neurons with cortical projections to a co-released excitatory transmitter from Hcrt1/OxA axons. Our observation of Hcrt1/OxA targeting of mesocortical neurons supports Hcrt1/OxA wakefulness enhancement in the VTA and could help explain the characteristic hypersomnia present in narcoleptic patients.

【 授权许可】

   
2014 Del Cid-Pellitero and Garzón; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128165844735.pdf 1852KB PDF download
Figure 9. 101KB Image download
Figure 8. 68KB Image download
Figure 7. 169KB Image download
Figure 6. 45KB Image download
Figure 5. 210KB Image download
Figure 4. 118KB Image download
Figure 3. 206KB Image download
Figure 2. 42KB Image download
Figure 1. 158KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Halliday GM, Törk I: Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 1986, 252:423-445.
  • [2]Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA: Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 2008, 152:1024-1031.
  • [3]Yamaguchi T, Sheen W, Morales M: Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 2007, 25:106-118.
  • [4]Oades RD, Halliday GM: Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 1987, 434:117-165.
  • [5]Swanson LW: The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 1982, 9:321-353.
  • [6]Carr DB, Sesack SR: GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 2000, 38:114-123.
  • [7]Lee RS, Steffensen SC, Henriksen SJ: Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci 2001, 21:1757-1766.
  • [8]Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM: Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 1992, 49:857-865.
  • [9]Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O'Donnell P: Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 2006, 59:412-417.
  • [10]de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG: The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998, 95:322-327.
  • [11]Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M: Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92:573-585.
  • [12]Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS: Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998, 18:9996-10015.
  • [13]Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK: Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001, 435:6-25.
  • [14]Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E: Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000, 355:39-40.
  • [15]Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM: Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000, 27:469-474.
  • [16]Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000, 6:991-997.
  • [17]Lee MG, Hassani OK, Jones BE: Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 2005, 25:6716-6720.
  • [18]Mileykovskiy BY, Kiyashchenko LI, Siegel JM: Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005, 46:787-798.
  • [19]Vittoz NM, Schmeichel B, Berridge CW: Hypocretin /orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur J Neurosci 2008, 28:1629-1640.
  • [20]España RA, Baldo BA, Kelley AE, Berridge CW: Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 2001, 106:699-715.
  • [21]Vittoz NM, Berridge CW: Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 2006, 31:384-395.
  • [22]Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE: Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 2003, 23:7-11.
  • [23]Balcita-Pedicino JJ, Sesack SR: Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol 2007, 503:668-684.
  • [24]Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Zhang WB, Agnati LF: Volume transmission and its different forms in the central nervous system. Chin J Integr Med 2013, 19:323-329.
  • [25]Trueta C, De-Miguel FF: Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front Physiol 2012, 3:319.
  • [26]Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L: Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007, 450:420-424.
  • [27]Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L: Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009, 29:10939-10949.
  • [28]Garzón M, Pickel VM: Ultrastructural localization of Leu5-enkephalin immunoreactivity in mesocortical neurons and their input terminals in rat ventral tegmental area. Synapse 2004, 52:38-52.
  • [29]van Bockstaele EJ, Wright AM, Cestari DM, Pickel VM: Immunolabeling of retrogradely transported Fluoro-Gold: sensitivity and application to ultrastructural analysis of transmitter-specific mesolimbic circuitry. J Neurosci Methods 1994, 55:65-78.
  • [30]Guan JL, Uehara K, Lu S, Wang QP, Funahashi H, Sakurai T, Yanagizawa M, Shioda S: Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord 2002, 26:1523-1532.
  • [31]Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD: 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur J Neurosci 2005, 22:1158-1168.
  • [32]Leranth C, Pickel VM: Electron microscopic pre-embedding double immunostaining methods. In Tract-Tracing Methods II. Edited by Heimer L, Zaborsky L. New York: Plenum; 1989:129-172.
  • [33]van Bockstaele EJ, Colago EE, Pickel VM: Enkephalin terminals form inhibitory-type synapses on neurons in the rat nucleus locus coeruleus that project to the medial prefrontal cortex. Neuroscience 1996, 71:429-442.
  • [34]Heidbreder CA, Groenewegen HJ: The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003, 27:555-579.
  • [35]Lindvall O, Bjorklund A, Moore RY, Stenevi U: Mesencephalic dopamine neurons projecting to neocortex. Brain Res 1974, 81:325-331.
  • [36]Lindvall O, Bjorklund A, Divac I: Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res 1978, 142:1-24.
  • [37]Williams SM, Goldman-Rakic PS: Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 1998, 8:321-345.
  • [38]Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J: Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 2008, 57:760-773.
  • [39]Steffensen SC, Lee RS, Stobbs SH, Henriksen SJ: Responses of ventral tegmental area GABA neurons to brain stimulation reward. Brain Res 2001, 906:190-197.
  • [40]Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ: Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 1998, 18:8003-8015.
  • [41]Miller JD, Farber J, Gatz P, Roffwarg H, German DC: Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 1983, 273:133-141.
  • [42]Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK: Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 2005, 25:5013-5023.
  • [43]Torrealba F, Yanagisawa M, Saper CB: Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 2003, 119:1033-1044.
  • [44]Guan JL, Wang QP, Shioda S: Immunoelectron microscopic examination of orexin-like immunoreactive fibers in the dorsal horn of the rat spinal cord. Brain Res 2003, 987:86-92.
  • [45]Zhu PC, Thureson-Klein AK, Klein RL: Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 1986, 19:43-54.
  • [46]Thureson-Klein AK, Klein RL: Exocytosis from neuronal large dense-cored vesicles. Int Rev Cytol 1990, 121:67-126.
  • [47]Borgland SL, Storm E, Bonci A: Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci 2008, 28:1545-1556.
  • [48]Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, Richardson KA: Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res 2010, 1314:76-90.
  • [49]del Cid-Pellitero E, Garzón M: Hypocretin1/OrexinA-containing axons innervate locus coeruleus neurons that project to the Rat medial prefrontal cortex. Implication in the sleep-wakefulness cycle and cortical activation. Synapse 2011, 65:843-857.
  • [50]del Cid-Pellitero E, Garzón M: Medial prefrontal cortex receives input from dorsal raphe nucleus neurons targeted by Hypocretin1/OrexinA-containing axons. Neuroscience 2011, 172:30-43.
  • [51]del Cid-Pellitero E, Garzón M: Hypocretin1/OrexinA axon targeting of laterodorsal tegmental nucleus neurons projecting to the rat medial prefrontal cortex. Cereb Cortex 2011, 21:2762-2773.
  • [52]Holland PR, Akerman S, Goadsby PJ: Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther 2005, 315:1380-1385.
  • [53]Shih CD, Chuang YC: Nitric oxide and GABA mediate bi-directional cardiovascular effects of orexin in the nucleus tractus solitarii of rats. Neuroscience 2007, 149:625-635.
  • [54]Abounader R, Hamel E: Associations between neuropeptide Y nerve terminals and intraparenchymal microvessels in rat and human cerebral cortex. J Comp Neurol 1997, 388:444-453.
  • [55]Horvath TL, Diano S, van den Pol AN: Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci 1999, 19:1072-1087.
  • [56]Huang H, Ghosh P, van den Pol AN: Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 2006, 95:1656-1668.
  • [57]Burgess CR, Tse G, Gillis L, Peever JH: Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep 2010, 33:1295-1304.
  • [58]Reid MS, Tafti M, Nishino S, Sampathkumaran R, Siegel JM, Mignot E: Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine. Brain Res 1996, 733:83-100.
  • [59]del Cid-Pellitero E, Garzón M: Modulation by the hypocretinergic/orexinergic neurotransmission system in sleep-wakefulness cycle states. Rev Neurol 2007, 45:482-490.
  • [60]Methippara MM, Alam MN, Szymusiak R, McGinty D: Effects of lateral preoptic area application of orexin-A on sleep-wakefulness. Neuroreport 2000, 11:3423-3426.
  • [61]Saper CB, Chou TC, Scammell TE: The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 2001, 24:726-731.
  • [62]Nuñez A, Moreno-Balandrán ME, Rodrigo-Angulo ML, Garzón M, de Andrés I: Relationship between the perifornical hypothalamic area and oral pontine reticular nucleus in the rat. Possible implication of the hypocretinergic projection in the control of rapid eye movement sleep. Eur J Neurosci 2006, 24:2834-2842.
  • [63]Moreno-Balandrán E, Garzón M, Bodalo C, Reinoso-Suárez F, de Andrés I: Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur J Neurosci 2008, 28:331-341.
  • [64]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 4th edition. San Diego: Academic Press; 1998.
  • [65]Swanson LW: Brain Maps: Structure Of The Rat Brain. 2nd edition. New York: Elsevier; 1998.
  • [66]Wang QP, Koyama Y, Guan JL, Takahashi K, Kayama Y, Shioda S: The orexinergic synaptic innervation of serotonin- and orexin 1-receptor-containing neurons in the dorsal raphe nucleus. Regul Pept 2005, 126:35-42.
  • [67]Shu SY, Ju G, Fan LZ: The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 1988, 85:169-171.
  • [68]Peters A, Palay SL, Webster H: The Fine Structure Of The Nervous System. 3rd edition. New York: Oxford University Press; 1991.
  文献评价指标  
  下载次数:61次 浏览次数:20次