期刊论文详细信息
BMC Genomics
Harnessing cross-species alignment to discover SNPs and generate a draft genome sequence of a bighorn sheep (Ovis canadensis)
David W Coltman2  Xiaoping Liao3  Paul Stothard1  Stephen S Moore1  Joshua M Miller2 
[1] Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada;Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
关键词: Domestication;    Comparative genomics;    Cross-species alignment;   
Others  :  1203910
DOI  :  10.1186/s12864-015-1618-x
 received in 2015-01-12, accepted in 2015-05-05,  发布年份 2015
PDF
【 摘 要 】

Background

Whole genome sequences (WGS) have proliferated as sequencing technology continues to improve and costs decline. While many WGS of model or domestic organisms have been produced, a growing number of non-model species are also being sequenced. In the absence of a reference, construction of a genome sequence necessitates de novo assembly which may be beyond the ability of many labs due to the large volumes of raw sequence data and extensive bioinformatics required. In contrast, the presence of a reference WGS allows for alignment which is more tractable than assembly. Recent work has highlighted that the reference need not come from the same species, potentially enabling a wide array of species WGS to be constructed using cross-species alignment. Here we report on the creation a draft WGS from a single bighorn sheep (Ovis canadensis) using alignment to the closely related domestic sheep (Ovis aries).

Results

Two sequencing libraries on SOLiD platforms yielded over 865 million reads, and combined alignment to the domestic sheep reference resulted in a nearly complete sequence (95% coverage of the reference) at an average of 12x read depth (104 SD). From this we discovered over 15 million variants and annotated them relative to the domestic sheep reference. We then conducted an enrichment analysis of those SNPs showing fixed differences between the reference and sequenced individual and found significant differences in a number of gene ontology (GO) terms, including those associated with reproduction, muscle properties, and bone deposition.

Conclusion

Our results demonstrate that cross-species alignment enables the creation of novel WGS for non-model organisms. The bighorn sheep WGS will provide a resource for future resequencing studies or comparative genomics.

【 授权许可】

   
2015 Miller et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523024351764.pdf 579KB PDF download
Fig. 1. 70KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends in Ecology & Evolution. 2014; 29(1):51-63.
  • [2]Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B et al.. Great ape genetic diversity and population history. Nature. 2013; 499(7459):471-5.
  • [3]Telford MJ, Copley RR. Improving animal phylogenies with genomic data. Trends in Genetics. 2011; 27(5):186-95.
  • [4]Yandell M, Ence D. A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet. 2012; 13(5):329-42.
  • [5]Bourque G, Zdobnov E, Bork P, Pevzner P, Tesler G. Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Research. 2005; 15(1):98-110.
  • [6]Zhao H, Bourque G. Recovering genome rearrangements in the mammalian phylogeny. Genome Research. 2009; 19(5):934-42.
  • [7]Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg L, et al. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 2010;8(9).
  • [8]Fang X, Zhang Y, Zhang R, Yang L, Li M, Ye K, et al. Genome sequence and global sequence variation map with 5.5 million SNPs in Chinese rhesus macaque. Genome Biol. 2011;12(7). doi:10.1186/gb-2011-1112-1187-r1163.
  • [9]Vijay N, Poelstra JW, Künstner A, Wolf JBW. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Molecular Ecology. 2013; 22(3):620-34.
  • [10]Angeloni F, Wagemaker N, Vergeer P, Ouborg J. Genomic toolboxes for conservation biologists. Evolutionary Applications. 2012; 5(2):130-43.
  • [11]Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. TREE. 2012; 27(9):489-96.
  • [12]Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011; 475(7357):493-6.
  • [13]Sheehan S, Harris K, Song YS. Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics. 2013; 194(3):647-62.
  • [14]Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brondum RF et al.. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014; 46(8):858-65.
  • [15]Miller J, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010; 95(6):315-27.
  • [16]Hunt M, Newbold C, Berriman M, Otto T. A comprehensive evaluation of assembly scaffolding tools. Genome Biology. 2014; 15(3):R42. BioMed Central Full Text
  • [17]Ekblom R, Wolf JBW. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl. 2014;7(9):1026-1042.
  • [18]Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011; 12:671-82.
  • [19]Wang B, Ekblom R, Bunikis I, Siitari H, Hoglund J. Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution. BMC Genomics. 2014; 15(1):180. BioMed Central Full Text
  • [20]Gnerre S, Lander E, Lindblad-Toh K, Jaffe D. Assisted assembly: how to improve a de novo genome assembly by using related species. Genome Biol. 2009;10(8).
  • [21]Kim J, Larkin D, Cai Q, Asan, Zhang Y, Ge R et al.. Reference-assisted chromosome assembly. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110(5):1785-90.
  • [22]Canavez FC, Luche DD, Stothard P, Leite KRM, Sousa-Canavez JM, Plastow G et al.. Genome sequence and assembly of Bos indicus. Journal of Heredity. 2012; 103(3):342-8.
  • [23]Kohn MH, Murphy WJ, Ostrander EA, Wayne RK. Genomics and conservation genetics. Trends in Ecology & Evolution. 2006; 21(11):629-37.
  • [24]Berger J. Persistence of different-sized populations: an empirical assessment of rapid extinctions in bighorn sheep. Conservation Biology. 1990; 4(1):91-8.
  • [25]Festa-Bianchet M, Pelletier F, Jorgenson JT, Feder C, Hubbs A. Decrease in horn size and increase in age of trophy sheep in Alberta over 37 years. The Journal of Wildlife Management. 2014; 78(1):133-41.
  • [26]Hedrick PW. Conservation genetics and the persistence and translocation of small populations: bighorn sheep populations as examples. Animal Conservation. 2014; 17(2):106-14.
  • [27]Johnson HE, Mills LS, Wehausen JD, Stephenson TR, Luikart G. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep. Conservation Biology. 2011; 25(6):1240-9.
  • [28]Olson ZH, Whittaker DG, Rhodes OE. Translocation history and genetic diversity in reintroduced bighorn sheep. The Journal of Wildlife Management. 2013; 77(8):1553-63.
  • [29]Shackleton DM, Shank CC, Wikeem B. Natural history of rock mountain and California bighorn sheep. In: Mountain sheep of North America. Valdez R, Krausman PR, editors. The University of Arizona Press, Tuscon; 1999: p.78-138.
  • [30]Coltman DW, O’Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M. Undesirable evolutionary consequences of trophy hunting. Nature. 2003; 426(6967):655-8.
  • [31]Réale D, Martin J, Coltman DW, Poissant J, Festa-Bianchet M. Male personality, life-history strategies and reproductive success in a promiscuous mammal. Journal of Evolutionary Biology. 2009; 22(8):1599-607.
  • [32]Poissant J, Davis CS, Malenfant RM, Hogg JT, Coltman DW. QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep. Heredity. 2012; 108:256-63.
  • [33]Miller JM, Poissant J, Hogg JT, Coltman DW. Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis). Molecular Ecology. 2012; 21(7):1583-96.
  • [34]Miller JM, Malenfant RM, David P, Davis CS, Poissant J, Hogg JT et al.. Estimating genome-wide heterozygosity: effects of demographic history and marker type. Heredity. 2014; 112:240-7.
  • [35]Kijas JW, Porto-Neto L, Dominik S, Reverter A, Bunch R, McCulloch R et al.. Linkage disequilibrium over short physical distances measured in sheep using a high-density SNP chip. Animal Genetics. 2014; 45(5):754-7.
  • [36]Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T et al.. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 2014; 344(6188):1168-73.
  • [37]Bunch T, Wu C, Zhang Y, Wang S. Phylogenetic analysis of snow sheep (Ovis nivicola) and closely related taxa. Journal of Heredity. 2006; 97(1):21-30.
  • [38]Poissant J, Hogg JT, Davis CS, Miller JM, Maddox JF, Coltman D. Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep. BMC Genomics. 2010;11(524). doi:10.1186/1471-2164-1111-1524.
  • [39]Miller JM, Poissant J, Kijas J, Coltman DW. A genome-wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep. Molecular Ecology Resources. 2011; 11(2):314-22.
  • [40]Miller JM, Malenfant RM, Moore SS, Coltman DW. Short reads, circular genome: skimming SOLiD sequence to construct the bighorn sheep mitochondrial genome. Journal of Heredity. 2012; 103(1):140-6.
  • [41]Poissant J, Shafer ABA, Davis CS, Mainguy J, Hogg JT, CÔTÉ ST et al.. Genome-wide cross-amplification of domestic sheep microsatellites in bighorn sheep and mountain goats. Molecular Ecology Resources. 2009; 9(4):1121-6.
  • [42]Coltman DW, Hogg JT, Miller JM. Genomic resources notes accepted 1 April 2013–31 May 2013. Molecular Ecology Resources. 2013; 13(5):965.
  • [43]Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011; 107(1):1.
  • [44]Glenn TC. Field guide to next-generation DNA sequencers. Molecular Ecology Resources. 2011; 11(5):759-69.
  • [45]Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T et al.. The potential and challenges of nanopore sequencing. Nat Biotech. 2008; 28(10):1146-53.
  • [46]Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010; 11(1):31-46.
  • [47]Ondov B, Varadarajan A, Passalacqua K, Bergman N. Efficient mapping of applied biosystems SOLiD sequence data to a reference genome for functional genomic applications. Bioinformatics. 2008; 24(23):2776-7.
  • [48]McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu YT, Tsung EF et al.. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Research. 2009; 19(9):1527-41.
  • [49]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078-9.
  • [50]Wakeley J. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends in Ecology & Evolution. 1996; 11(4):158-62.
  • [51]Miller JM, Kijas JW, Heaton MP, McEwan JC, Coltman DW. Consistent divergence times and allele sharing measured from cross-species application of SNP chips developed for three domestic species. Molecular Ecology Resources. 2012; 12(6):1145-50.
  • [52]Sechi T, Coltman DW, Kijas JW. Evaluation of 16 loci to examine the cross-species utility of single nucleotide polymorphism arrays. Animal Genetics. 2010; 41(2):199-202.
  • [53]Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L et al.. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly. 2012; 6(2):80-92.
  • [54]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18):3674-6.
  • [55]Cerdeira LT, Carneiro AR, Ramos RTJ, de Almeida SS, D´Afonseca V, Schneider MPC et al.. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study. Journal of Microbiological Methods. 2011; 86(2):218-23.
  • [56]Umemura M, Koyama Y, Takeda I, Hagiwara H, Ikegami T, Koike H, et al. Fine de novo sequencing of a fungal genome using only solid short read data: verification on aspergillus oryzae RIB40. PLoS One. 2013;8(5).
  • [57]Bensch S, Coltman D, Davis C, Hellgren O, Johansson T et al.. Genomic resources notes accepted 1 June 2013-31 July 2013. Molecular Ecology Resources. 2014; 14(1):218.
  • [58]Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M et al.. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012; 10(2):e1001258.
  • [59]Lv F-H, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW et al.. Adaptations to climate-mediated selective pressures in sheep. Molecular Biology and Evolution. 2014; 31(12):3324-43.
  • [60]Davis EB, Brakora KA, Lee AH. Evolution of ruminant headgear: a review. Proceedings of the Royal Society B: Biological Sciences. 2011; 278(1720):2857-65.
  • [61]Coltman DW, Festa-Bianchet M, Jorgenson JT, Strobeck C. Age-dependent sexual selection in bighorn rams. Proceedings of the Royal Society B-Biological Sciences. 2002; 269(1487):165-72.
  • [62]Pelletier F, Festa-Bianchet M. Sexual selection and social rank in bighorn rams. Animal Behaviour. 2006; 71(3):649-55.
  • [63]Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B et al.. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006; 38(7):813-8.
  • [64]Gaillard JM, Festa-Bianchet M, Delorme D, Jorgenson JT. Body mass and individual fitness in female ungulates: bigger is not always better. Proceedings of the Royal Society B: Biological Sciences. 2000; 267(1442):471-7.
  • [65]Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7).
  • [66]Lee K-T, Chung W-H, Lee S-Y, Choi J-W, Kim J, Lim D, et al. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics. 2013;519(14).
  • [67]Sasaki Y, Nagai K, Nagata Y, Doronbekov K, Nishimura S, Yoshioka S et al.. Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle. Animal Genetics. 2006; 37(1):40-6.
  • [68]Braglia S, Davoli R, Zappavigna A, Zambonelli P, Buttazzoni L, Gallo M et al.. SNPs of MYPN and TTN genes are associated to meat and carcass traits in Italian large white and Italian duroc pigs. Molecular Biology Reports. 2013; 40(12):6927-33.
  • [69]Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity. 2008; 100(2):158-70.
  • [70]Buerkle C, Gompert Z, Parchman T. The n = 1 constraint in population genomics. Molecular Ecology. 2011; 20(8):1575-81.
  • [71]Bolormaa S, Kijas J, Coltman DW, Daetwyler HD, MacLeod IM. Inferring ancestral demography of domestic and wild sheep using whole-genome sequence. 10th world congress of genetics applied to livestock production: 2014 2014. Asas, Vancouver, British Columbia, Canada; 2014.
  • [72]Sambrook J, Russell D. Molecular cloning: a laboratory manual. Cold Spring Harbor Press (NY): 2001.
  • [73]Danecek P, Auton A, Abecasis G, Albers C, Banks E, DePristo M et al.. The variant call format and VCFtools. Bioinformatics. 2011; 27(15):2156-8.
  • [74]Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM et al.. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program. SnpSift. Frontiers in, Genetics; 2012.
  • [75]Kinsella R, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database-the Journal of Biological Databases and Curation. 2011:bar030.
  • [76]Flicek P, Amode M, Barrell D, Beal K, Billis K, Brent S et al.. Ensembl 2014. Nucleic Acids Research. 2014; 42(D1):D749-55.
  • [77]Blüthgen N, Brand K, Čajavec B, Swat M, Herzel H, Beule D. Biological profiling of gene groups utilizing gene ontology. Genome Informatics. 2005; 16(1):106-15.
  • [78]Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57(1):289-300.
  文献评价指标  
  下载次数:0次 浏览次数:0次