期刊论文详细信息
BMC Cardiovascular Disorders
Multi-parametric MRI as an indirect evaluation tool of the mechanical properties of in-vitro cardiac tissues
Daniel Curnier3  Anthony Foudis1  Nagib Dahdah2  Delphine Périé2 
[1] École Polytechnique, Mechanical Engineering, Montréal, QC, Canada;Research center, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada;Université de Montréal, Kinesiology, Montréal, QC, Canada
关键词: Principal component analysis;    Multiple regressions;    Multi-parametric MRI;    Mechanical properties;    Ventricle;    Myocardium;    Cardiac muscle;   
Others  :  857762
DOI  :  10.1186/1471-2261-13-24
 received in 2012-10-22, accepted in 2013-03-20,  发布年份 2013
PDF
【 摘 要 】

Background

Early detection of heart failure is essential to effectively reduce related mortality. The quantification of the mechanical properties of the myocardium, a primordial indicator of the viability of the cardiac tissue, is a key element in patient’s care. Despite an incremental utilization of multi-parametric magnetic resonance imaging (MRI) for cardiac tissue characteristics and function, the link between multi-parametric MRI and the mechanical properties of the heart has not been established. We sought to determine the parametric relationship between the myocardial mechanical properties and the MR parameters. The specific aim was to develop a reproducible evaluative quantitative tool of the mechanical properties of cardiac tissue using multi-parametric MRI associated to principal component analysis.

Methods

Samples from porcine hearts were submitted to a multi-parametric MRI acquisition followed by a uniaxial tensile test. Multi linear regressions were performed between dependent (Young’s modulus E) and independent (relaxation times T1, T2 and T2*, magnetization transfer ratio MTR, apparent diffusion coefficient ADC and fractional anisotropy FA) variables. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables.

Results

Values of 46.1±12.7 MPa for E, 729±21 ms for T1, 61±6 ms for T2, 26±7 for T2*, 35±5% for MTRx100, 33.8±4.7 for FAx10-2, and 5.85±0.21 mm2/s for ADCx10-4 were measured. Multi linear regressions showed that only 45% of E can be explained by the MRI parameters. The principal component analysis reduced our seven variables to two principal components with a cumulative variability of 63%, which increased to 80% when considering the third principal component.

Conclusions

The proposed multi-parametric MRI protocol associated to principal component analysis is a promising tool for the evaluation of mechanical properties within the left ventricle in the in vitro porcine model. Our in vitro experiments will now allow us focused in vivo testing on healthy and infracted hearts in order to determine useful quantitative MR-based biomarkers.

【 授权许可】

   
2013 Périé et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723084243150.pdf 1312KB PDF download
98KB Image download
188KB Image download
53KB Image download
45KB Image download
【 图 表 】

【 参考文献 】
  • [1]McMurray JJ, Pfeffer MA: Heart failure. Lancet 2005, 365:1877-1889.
  • [2]Bogen DK, Rabinowitz SA, Needleman A, McMahon TA, Abelmann WH: An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res 1980, 47:728-741.
  • [3]Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK: Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 2001, 71:654-662.
  • [4]Wollmuth JR, Bree DR, Cupps BP, Krock MD, Pomerantz BJ, Pasque RP, Howells A, Moazami N, Kouchoukos NT, Pasque MK: Left ventricular wall stress in patients with severe aortic insufficiency with finite element analysis. Ann Thorac Surg 2006, 82:840-846.
  • [5]Thorvaldsen T, Osnes H, Sundnes J: A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue. Comput Methods Biomech Biomed Engin 2005, 8:369-379.
  • [6]Yettram AL, Beecham MC: An analytical method for the determination of along-fibre to cross-fibre elastic modulus ratio in ventricular myocardium–a feasibility study. Med Eng Phys 1998, 20:103-108.
  • [7]Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM: MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 2005, 289:H692-H700.
  • [8]Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Hsu EW, Saloner DA, Guccione JM: Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J Thorac Cardiovasc Surg 2008, 135:1094-1102. 1102 e1091-1092
  • [9]Wenk JF, Sun K, Zhang Z, Soleimani M, Ge L, Saloner D, Wallace AW, Ratcliffe MB, Guccione JM: Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction. J Biomech Eng 2011, 133:044501.
  • [10]Yoshioka I, Saiki Y, Ichinose A, Takase K, Takahashi S, Ohashi T, Sato M, Tabayashi K: Tagged cine magnetic resonance imaging with a finite element model can predict the severity of retrosternal adhesions prior to redo cardiac surgery. J Thorac Cardiovasc Surg 2009, 137:957-962.
  • [11]Augenstein KF, Cowan BR, LeGrice IJ, Young AA: Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging. Med Image Comput Comput Assist Interv 2006, 9:628-635.
  • [12]Dorri F, Niederer PF, Lunkenheimer PP: A finite element model of the human left ventricular systole. Comput Methods Biomech Biomed Engin 2006, 9:319-341.
  • [13]Wang VY, Lam HI, Ennis DB, Cowan BR, Young AA, Nash MP: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med Image Anal 2009, 13:773-784.
  • [14]Wang C, Witschey W, Goldberg A, Elliott M, Borthakur A, Reddy R: Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn Reson Med 2010, 64:1520-1528.
  • [15]Bovendeerd PH, Arts T, Delhaas T, Huyghe JM, van Campen DH, Reneman RS: Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments. Am J Physiol 1996, 270:H398-H410.
  • [16]Kolipaka A, McGee KP, Araoz PA, Glaser KJ, Manduca A, Romano AJ, Ehman RL: MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure-volume model in a left ventricular model of the heart. Magn Reson Med 2009, 62:135-140.
  • [17]Elgeti T, Laule M, Kaufels N, Schnorr J, Hamm B, Samani A, Braun J, Sack I: Cardiac MR elastography: comparison with left ventricular pressure measurement. J Cardiovasc Magn Reson 2009, 11:44.
  • [18]Sack I, Rump J, Elgeti T, Samani A, Braun J: MR elastography of the human heart: noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn Reson Med 2009, 61:668-677.
  • [19]Robert B, Sinkus R, Gennisson JL, Fink M: Application of DENSE-MR-elastography to the human heart. Magn Reson Med 2009, 62:1155-1163.
  • [20]Kolipaka A, McGee KP, Manduca A, Anavekar N, Ehman RL, Araoz PA: In vivo assessment of MR elastography-derived effective end-diastolic myocardial stiffness under different loading conditions. J Magn Reson Imaging 2011, 33:1224-1228.
  • [21]Zhong X, Spottiswoode BS, Meyer CH, Kramer CM, Epstein FH: Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2010, 64:1089-1097.
  • [22]Wen H, Bennett E, Epstein N, Plehn J: Magnetic resonance imaging assessment of myocardial elastic modulus and viscosity using displacement imaging and phase-contrast velocity mapping. Magn Reson Med 2005, 54:538-548.
  • [23]Young AA, Frangi AF: Computational cardiac atlases: from patient to population and back. Exp Physiol 2009, 94:578-596.
  • [24]Fonseca CG, Backhaus M, Bluemke DA, Britten RD, Chung JD, Cowan BR, Dinov ID, Finn JP, Hunter PJ, Kadish AH: The Cardiac Atlas Project–an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 2011, 27:2288-2295.
  • [25]Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ: Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 2008, 52:1574-1580.
  • [26]Krombach GA, Hahn C, Tomars M, Buecker A, Grawe A, Gunther RW, Kuhl HP: Cardiac amyloidosis: MR imaging findings and T1 quantification, comparison with control subjects. J Magn Reson Imaging 2007, 25:1283-1287.
  • [27]Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP: T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009, 11:56.
  • [28]Bruvold M, Seland JG, Brurok H, Jynge P: Dynamic water changes in excised rat myocardium assessed by continuous distribution of T1 and T2. Magn Reson Med 2007, 58:442-447.
  • [29]Foltz WD, Yang Y, Graham JJ, Detsky JS, Dick AJ, Wright GA: T2 fluctuations in ischemic and post-ischemic viable porcine myocardium in vivo. J Cardiovasc Magn Reson 2006, 8:469-474.
  • [30]Meloni A, Pepe A, Positano V, Favilli B, Maggio A, Capra M, Lo Pinto C, Gerardi C, Santarelli MF, Midiri M: Influence of myocardial fibrosis and blood oxygenation on heart T2* values in thalassemia patients. J Magn Reson Imaging 2009, 29:832-837.
  • [31]Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen VJ: Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 2009, 11:47.
  • [32]Sosnovik DE, Wang R, Dai G, Wang T, Aikawa E, Novikov M, Rosenzweig A, Gilbert RJ, Wedeen VJ: Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circ Cardiovasc Imaging 2009, 2:206-212.
  • [33]Rohmer D, Sitek A, Gullberg GT: Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol 2007, 42:777-789.
  • [34]Frindel C, Robini M, Rapacchi S, Stephant E, Zhu YM, Croisille P: Towards in vivo diffusion tensor MRI on human heart using edge-preserving regularization. Conf Proc IEEE Eng Med Biol Soc 2007, 2007:6008-6011.
  • [35]Toussaint N, Sermesant M, Stoeck CT, Kozerke S, Batchelor PG: In vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. Med Image Comput Comput Assist Interv 2010, 13:418-425.
  • [36]Zhang Y, Liang X, Ma J, Jing Y, Gonzales MJ, Villongco C, Krishnamurthy A, Frank LR, Nigam V, Stark P: An atlas-based geometry pipeline for cardiac Hermite model construction and diffusion tensor reorientation. Med Image Anal 2012, 16((6)):1130-41.
  • [37]Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med 2005, 54:850-859.
  • [38]Weiss CR, Aletras AH, London JF, Taylor JL, Epstein FH, Wassmuth R, Balaban RS, Arai AE: Stunned, infarcted, and normal myocardium in dogs: simultaneous differentiation by using gadolinium-enhanced cine MR imaging with magnetization transfer contrast. Radiology 2003, 226:723-730.
  • [39]Wright P, Mougin O, Totman J, Peters A, Brookes M, Coxon R, Morris P, Clemence M, Francis S, Bowtell R, Gowland P: Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magnetic Resonance Materials in Physics. Biology and Medicine 2008, 21:121-130.
  • [40]Wang C, Witschey W, Goldberg A, Elliott M, Borthakur A, Reddy R: Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn Res Med 2010, 64(5):1520-8.
  • [41]Henkelman RM, Stanisz GJ, Graham SJ: Magnetization transfer in MRI: a review. NMR Biomed 2001, 14:57-64.
  • [42]Kingsley PB: Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts in Magnetic Resonance Part A 2006, 28A:101-122.
  • [43]Kingsley PB: Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A 2006, 28A:123-154.
  • [44]Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161:401-407.
  • [45]Ghaemi H, Behdinan K, Spence AD: In vitro technique in estimation of passive mechanical properties of bovine heart part I. Experimental techniques and data. Med Eng Phys 2009, 31:76-82.
  • [46]Humphrey JD, Strumpf RK, Yin FC: Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J Biomech Eng 1990, 112:340-346.
  • [47]Humphrey JD, Yin FC: On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 1987, 109:298-304.
  • [48]Humphrey JD, Strumpf RK, Yin FC: Determination of a constitutive relation for passive myocardium: I. A new functional form. J Biomech Eng 1990, 112:333-339.
  • [49]Lin DH, Yin FC: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng 1998, 120:504-517.
  • [50]Ghaemi H, Behdinan K, Spence AD: In vitro technique in estimation of passive mechanical properties of bovine heart part II. Constitutive relation and finite element analysis. Med Eng Phys 2009, 31:83-91.
  • [51]Virgen-Ortiz A, Marin JL, Elizalde A, Castro E, Stefani E, Toro L, Muniz J: Passive mechanical properties of cardiac tissues in heart hypertrophy during pregnancy. J Physiol Sci 2009, 59:391-396.
  • [52]Chaturvedi RR, Herron T, Simmons R, Shore D, Kumar P, Sethia B, Chua F, Vassiliadis E, Kentish JC: Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 2010, 121:979-988.
  • [53]Yang M, Baldwin SL, Marutyan KR, Wallace KD, Holland MR, Miller JG: Elastic stiffness coefficients (c11, C33, and C13) for freshly excised and formalin-fixed myocardium from ultrasonic velocity measurements. J Acoust Soc Am 2006, 119:1880-1887.
  • [54]Huang TY, Liu YJ, Stemmer A, Poncelet BP: T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence. Magn Reson Med 2007, 57:960-966.
  • [55]Wacker CM, Bock M, Hartlep AW, Beck G, van Kaick G, Ertl G, Bauer WR, Schad LR: Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements. Magn Reson Med 1999, 41:686-695.
  • [56]Wagenseil JE, Johansson LO, Lorenz CH: Characterization of t1 relaxation and blood-myocardial contrast enhancement of NC100150 injection in cardiac MRI. J Magn Reson Imaging 1999, 10:784-789.
  • [57]Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD: Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010, 12:69.
  • [58]Gai N, Turkbey EB, Nazarian S, van der Geest RJ, Liu CY, Lima JA, Bluemke DA: T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med 2011, 65:1407-1415.
  • [59]Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004, 52:141-146.
  • [60]Recuerda M, Perie D, Gilbert G, Beaudoin G: Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric Magnetic Resonance Imaging. BMC Musculoskelet Disord 2012, 13:95.
  • [61]Grenier R, Perie D, Gilbert G, Beaudoin G, Curnier D: Assessment of mechanical properties of muscles from multi-parametric Magnetic Resonance Imaging. J Biomed Sci Eng 2013. In press
  文献评价指标  
  下载次数:74次 浏览次数:22次