期刊论文详细信息
BMC Genomics
Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins
Bernhard Schink1  David Schleheck1  Olga B Gutiérrez Acosta1 
[1] Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
关键词: Thiamine diphosphate;    Carbonylation;    Genome sequencing;    Acetone activation;    Desulfococcus biacutus;   
Others  :  855230
DOI  :  10.1186/1471-2164-15-584
 received in 2014-03-21, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions.

Results

In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone.

Conclusions

We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

【 授权许可】

   
2014 Gutiérrez Acosta et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722031713536.pdf 743KB PDF download
95KB Image download
20150213030234980.pdf 356KB PDF download
59KB Image download
【 图 表 】

【 参考文献 】
  • [1]Sluis MK, Small FJ, Allen JR, Ensign SA: Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2. J Bacteriol 1996, 178(14):4020-4026.
  • [2]Schühle K, Heider J: Acetone and butanone metabolism of the denitrifying bacterium “Aromatoleum aromaticum” demonstrates novel biochemical properties of an ATP-dependent aliphatic ketone carboxylase. J Bacteriol 2012, 194(1):131-141.
  • [3]Dullius CH, Chen CY, Schink B: Nitrate-dependent degradation of acetone by Alicycliphilus and Paracoccus strains and comparison of acetone carboxylase enzymes. Appl Environ Microbiol 2011, 77(19):6821-6825.
  • [4]Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA: Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol 2002, 184(11):2969-2977.
  • [5]Janssen PH, Schink B: Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum. Arch Microbiol 1995, 163(3):188-194.
  • [6]Platen H, Schink B, Temmes A: Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch Microbiol 1990, 154(4):355-361.
  • [7]Gutiérrez Acosta OB, Hardt N, Schink B: Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus. Appl Environ Microbiol 2013, 79(20):6228-6235.
  • [8]DiDonato RJ Jr, Young ND, Butler JE, Chin KJ, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methe BA: Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 2010, 5(11):e14072.
  • [9]Wohlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R: Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 2013, 15(5):1334-1355.
  • [10]Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, Krause L, Puhler A, Klenk HP, Richter M, Schuler M, Glockner FO, Meyerdierks A, Gottschalk G, Amann R: Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 2009, 11(5):1038-1055.
  • [11]Callaghan AV, Morris BE, Pereira IA, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B: The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 2012, 14(1):101-113.
  • [12]Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP: The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 2004, 6(9):887-902.
  • [13]Spring S, Lapidus A, Schroder M, Gleim D, Sims D, Meincke L, Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Saunders E, Brettin T, Detter JC, et al.: Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575). Stand Genomic Sci 2009, 1(3):242-253.
  • [14]Sun H, Spring S, Lapidus A, Davenport K, Del Rio TG, Tice H, Nolan M, Copeland A, Cheng JF, Lucas S, Tapia R, Goodwin L, Pitluck S, Ivanova N, Pagani I, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Hauser L, Chang YJ, Jeffries CD, Detter JC, Han C, Rohde M, Brambilla E, Goker M, Woyke T, Bristow J, et al.: Complete genome sequence of Desulfarculus baarsii type strain (2st14). Stand Genomic Sci 2010, 3(3):276-284.
  • [15]Aeckersberg F, Bak F, Widdel F: Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 1991, 156:5-14.
  • [16]Kondo H, Ishimoto M: Requirement for thiamine pyrophosphate and magnesium for sulfoacetaldehyde sulfo-lyase activity. J Biochem 1974, 76(1):229-231.
  • [17]Pierce E, Becker DF, Ragsdale SW: Identification and characterization of oxalate oxidoreductase, a novel thiamine pyrophosphate-dependent 2-oxoacid oxidoreductase that enables anaerobic growth on oxalate. J Biol Chem 2010, 285(52):40515-40524.
  • [18]Reed L: Multienzyme complexes. Acc Chem Res 1974, 7:40-46.
  • [19]Kochetov GA, Izotova AE: Interactions of thiamine pyrophosphate and transketolase. Dokl Akad Nauk SSSR 1972, 205:986-988.
  • [20]Lindqvist Y, Schneider G, Ermler U, Sundstrom M: Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. EMBO J 1992, 11(7):2373-2379.
  • [21]Kluger R: Thiamin diphosphate: a mechanistic update on enzymic and nonenzymic catalysis of decarboxylation. Chem Rev 1987, 87(5):863-876.
  • [22]Gutiérrez Acosta OB, Hardt N, Hacker SM, Strittmatter T, Schink B, Marx A: Thiamine pyrophosphate stimulates acetone activation by Desulfococcus biacutus as monitored by a fluorogenic ATP analogue. ACS Chem Biol 2014, 9(6):1263-1266.
  • [23]Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, Tapia R, Han CS, Goodwin LA, Cheng JF, Pitluck S, Copeland A, Lucas S, Nolan M, Lapidus AL, Palumbo AV, Wall JD: Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol 2011, 193(16):4268-4269.
  • [24]Janssen PH, Schink B: Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J Bacteriol 1995, 177(2):277-282.
  • [25]Schmidt A, Müller N, Schink B, Schleheck D: A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS One 2013, 8(2):e56905.
  • [26]Laemmli UK: Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 1970, 227(5259):680-685.
  • [27]Neuhoff V, Arold N, Taube D, Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9(6):255-262.
  文献评价指标  
  下载次数:43次 浏览次数:6次