期刊论文详细信息
BMC Developmental Biology
A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice
Anna-Katerina Hadjantonakis2  Alfonso Martinez-Arias1  Sonja Nowotschin2  Nadine Schrode2  Néstor Saiz2  Christian Schröter1  Laina Freyer2 
[1] Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK;Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
关键词: Live Imaging;    Cardiac mesoderm;    Endoderm;    Reporter mice;    H2B-Venus;    GATA6;   
Others  :  1231007
DOI  :  10.1186/s12861-015-0086-5
 received in 2015-08-05, accepted in 2015-10-09,  发布年份 2015
【 摘 要 】

Background

The GATA-binding factor 6 (Gata6) gene encodes a zinc finger transcription factor that often functions as a key regulator of lineage specification during development. It is the earliest known marker of the primitive endoderm lineage in the mammalian blastocyst. During gastrulation, GATA6 is expressed in early cardiac mesoderm and definitive endoderm progenitors, and is necessary for development of specific mesoderm and endoderm-derived organs including the heart, liver, and pancreas. Furthermore, reactivation or silencing of the Gata6 locus has been associated with certain types of cancer affecting endodermal organs.

Results

We have generated a Gata6 H2B-Venus knock-in reporter mouse allele for the purpose of labeling GATA6-expressing cells with a bright nuclear-localized fluorescent marker that is suitable for live imaging at single-cell resolution.

Conclusions

Expression of the Venus reporter was characterized starting from embryonic stem (ES) cells, through mouse embryos and adult animals. The Venus reporter was not expressed in ES cells, but was activated upon endoderm differentiation. Gata6 H2B-Venus/H2B-Venus homozygous embryos did not express GATA6 protein and failed to specify the primitive endoderm in the blastocyst. However, null blastocysts continued to express high levels of Venus in the absence of GATA6 protein, suggesting that early Gata6 transcription is independent of GATA6 protein expression. At early post-implantation stages of embryonic development, there was a strong correlation of Venus with endogenous GATA6 protein in endoderm and mesoderm progenitors, then later in the heart, midgut, and hindgut. However, there were discrepancies in reporter versus endogenous protein expression in certain cells, such as the body wall and endocardium. During organogenesis, detection of Venus in specific organs recapitulated known sites of endogenous GATA6 expression, such as in the lung bud epithelium, liver, pancreas, gall bladder, stomach epithelium, and vascular endothelium. In adults, Venus was observed in the lungs, pancreas, liver, gall bladder, ovaries, uterus, bladder, skin, adrenal glands, small intestine and corpus region of the stomach. Overall, Venus fluorescent protein under regulatory control of the Gata6 locus was expressed at levels that were easily visualized directly and could endure live and time-lapse imaging techniques. Venus is co-expressed with endogenous GATA6 throughout development to adulthood, and should provide an invaluable tool for examining the status of the Gata6 locus during development, as well as its silencing or reactivation in cancer or other disease states.

【 授权许可】

   
2015 Freyer et al.

附件列表
Files Size Format View
Fig. 11. 192KB Image download
Fig. 10. 123KB Image download
Fig. 9. 203KB Image download
Fig. 8. 228KB Image download
Fig. 7. 148KB Image download
Fig. 6. 90KB Image download
Fig. 5. 211KB Image download
Fig. 4. 117KB Image download
Fig. 3. 50KB Image download
Fig. 2. 137KB Image download
Fig. 1. 90KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

【 参考文献 】
  • [1]Maeda M, Ohashi K, Ohashi-Kobayashi A. Further extension of mammalian GATA-6. Dev Growth Differ. 2005; 47(9):591-600.
  • [2]Jiang Y, Evans T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol. 1996; 174(2):258-270.
  • [3]Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB, Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994; 269(37):23177-23184.
  • [4]Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev. 2002; 12(4):416-422.
  • [5]Chao CS, McKnight KD, Cox KL, Chang AL, Kim SK, Feldman BJ. Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLoS One. 2015; 10(2):e0118449.
  • [6]Catli G, Abaci A, Flanagan SE, De Franco E, Ellard S, Hattersley A et al.. A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: a case report. Diabetes Metab. 2013; 39(4):370-374.
  • [7]De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, International NDMC, Hattersley AT et al.. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes. 2013; 62(3):993-997.
  • [8]Gong M, Simaite D, Kuhnen P, Heldmann M, Spagnoli F, Blankenstein O et al.. Two novel GATA6 mutations cause childhood-onset diabetes mellitus, pancreas malformation and congenital heart disease. Horm Res Paediatr. 2013; 79(4):250-256.
  • [9]Lango Allen H, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R et al.. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2012; 44(1):20-22.
  • [10]Stanescu DE, Hughes N, Patel P, De Leon DD. A novel mutation in GATA6 causes pancreatic agenesis. Pediatr Diabetes. 2015; 16(1):67-70.
  • [11]Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS et al.. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 1998; 12(22):3579-3590.
  • [12]Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F. The transcription factor GATA6 is essential for early extraembryonic development. Development. 1999; 126(4):723-732.
  • [13]Schrode N, Saiz N, Di Talia S, Hadjantonakis AK. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell. 2014; 29(4):454-467.
  • [14]Bessonnard S, De Mot L, Gonze D, Barriol M, Dennis C, Goldbeter A et al.. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development. 2014; 141(19):3637-3648.
  • [15]Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development. 2008; 135(18):3081-3091.
  • [16]Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006; 10(5):615-624.
  • [17]Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG et al.. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006; 34(5):e42.
  • [18]Morrisey EE, Ip HS, Lu MM, Parmacek MS. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996; 177(1):309-322.
  • [19]Viotti M, Foley AC, Hadjantonakis AK: Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philos Trans R Soc Lond B Biol Sci. 2014, 369(1657). doi:10.1098/rstb.2013.0547.
  • [20]Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis AK. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis. 2013; 51(4):219-233.
  • [21]Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K et al.. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002; 16(7):784-789.
  • [22]Wamaitha SE, Del Valle I, Cho LT, Wei Y, Fogarty NM, Blakeley P et al.. Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells. Genes Dev. 2015; 29(12):1239-1255.
  • [23]Kwon GS, Viotti M, Hadjantonakis AK. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev Cell. 2008; 15(4):509-520.
  • [24]Cai KQ, Capo-Chichi CD, Rula ME, Yang DH, Xu XX. Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Dev Dyn. 2008; 237(10):2820-2829.
  • [25]Zhao R, Watt AJ, Li J, Luebke-Wheeler J, Morrisey EE, Duncan SA. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol. 2005; 25(7):2622-2631.
  • [26]Charron F, Nemer M. GATA transcription factors and cardiac development. Semin Cell Dev Biol. 1999; 10(1):85-91.
  • [27]Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008; 317(2):614-619.
  • [28]Xin M, Davis CA, Molkentin JD, Lien CL, Duncan SA, Richardson JA et al.. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci U S A. 2006; 103(30):11189-11194.
  • [29]Decker K, Goldman DC, Grasch CL, Sussel L. Gata6 is an important regulator of mouse pancreas development. Dev Biol. 2006; 298(2):415-429.
  • [30]Ketola I, Otonkoski T, Pulkkinen MA, Niemi H, Palgi J, Jacobsen CM et al.. Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol. 2004; 226(1–2):51-57.
  • [31]Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA et al.. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest. 2012; 122(10):3516-3528.
  • [32]Narita N, Heikinheimo M, Bielinska M, White RA, Wilson DB. The gene for transcription factor GATA-6 resides on mouse chromosome 18 and is expressed in myocardium and vascular smooth muscle. Genomics. 1996; 36(2):345-348.
  • [33]Heikinheimo M, Ermolaeva M, Bielinska M, Rahman NA, Narita N, Huhtaniemi IT et al.. Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology. 1997; 138(8):3505-3514.
  • [34]Kiiveri S, Liu J, Westerholm-Ormio M, Narita N, Wilson DB, Voutilainen R et al.. Differential expression of GATA-4 and GATA-6 in fetal and adult mouse and human adrenal tissue. Endocrinology. 2002; 143(8):3136-3143.
  • [35]Siltanen S, Heikkila P, Bielinska M, Wilson DB, Heikinheimo M. Transcription factor GATA-6 is expressed in malignant endoderm of pediatric yolk sac tumors and in teratomas. Pediatr Res. 2003; 54(4):542-546.
  • [36]Fang R, Olds LC, Sibley E. Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr Patterns. 2006; 6(4):426-432.
  • [37]Dusing MR, Wiginton DA. Epithelial lineages of the small intestine have unique patterns of GATA expression. J Mol Histol. 2005; 36(1–2):15-24.
  • [38]Walker EM, Thompson CA, Battle MA. GATA4 and GATA6 regulate intestinal epithelial cytodifferentiation during development. Dev Biol. 2014; 392(2):283-294.
  • [39]Lepore JJ, Cappola TP, Mericko PA, Morrisey EE, Parmacek MS. GATA-6 regulates genes promoting synthetic functions in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2005; 25(2):309-314.
  • [40]Capo-chichi CD, Cai KQ, Testa JR, Godwin AK, Xu XX. Loss of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol Cell Biol. 2009; 29(17):4766-4777.
  • [41]Cheung WK, Zhao M, Liu Z, Stevens LE, Cao PD, Fang JE et al.. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell. 2013; 23(6):725-738.
  • [42]Lin L, Bass AJ, Lockwood WW, Wang Z, Silvers AL, Thomas DG et al.. Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc Natl Acad Sci U S A. 2012; 109(11):4251-4256.
  • [43]Shen F, Li J, Cai W, Zhu G, Gu W, Jia L et al.. GATA6 predicts prognosis and hepatic metastasis of colorectal cancer. Oncol Rep. 2013; 30(3):1355-1361.
  • [44]Sulahian R, Casey F, Shen J, Qian ZR, Shin H, Ogino S et al.. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 2014; 33(49):5637-5648.
  • [45]Remond MC, Iaffaldano G, O’Quinn MP, Mezentseva NV, Garcia V, Harris BS et al.. GATA6 reporter gene reveals myocardial phenotypic heterogeneity that is related to variations in gap junction coupling. Am J Physiol Heart Circ Physiol. 2011; 301(5):H1952-1964.
  • [46]Sun-Wada GH, Manabe S, Yoshimizu T, Yamaguchi C, Oka T, Wada Y et al.. Upstream regions directing heart-specific expression of the GATA6 gene during mouse early development. J Biochem. 2000; 127(4):703-709.
  • [47]Sun-Wada GH, Kamei Y, Wada Y, Futai M. Regulatory elements directing gut expression of the GATA6 gene during mouse early development. J Biochem. 2004; 135(2):165-169.
  • [48]Brewer A, Gove C, Davies A, McNulty C, Barrow D, Koutsourakis M et al.. The human and mouse GATA-6 genes utilize two promoters and two initiation codons. J Biol Chem. 1999; 274(53):38004-38016.
  • [49]Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V et al.. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011; 474(7351):337-342.
  • [50]Schröter C, Rue P, Mackenzie JP, Martinez Arias A: FGF/MAPK signaling sets the switching threshold of a mutual repressor circuit controlling cell fate decisions in ES cells. bioRxiv 2015.
  • [51]Chen AE, Borowiak M, Sherwood RI, Kweudjeu A, Melton DA. Functional evaluation of ES cell-derived endodermal populations reveals differences between Nodal and Activin A-guided differentiation. Development. 2013; 140(3):675-686.
  • [52]Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis. 2006; 44(1):23-28.
  • [53]Shimosato D, Shiki M, Niwa H. Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev Biol. 2007; 7:80. BioMed Central Full Text
  • [54]Nowotschin S, Xenopoulos P, Schrode N, Hadjantonakis AK. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev Biol. 2013; 13:15. BioMed Central Full Text
  • [55]Ciruna B, Rossant J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell. 2001; 1(1):37-49.
  • [56]Rakeman AS, Anderson KV. Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching. Development. 2006; 133(16):3075-3083.
  • [57]Viotti M, Nowotschin S, Hadjantonakis AK. SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol. 2014; 16(12):1146-1156.
  • [58]Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell. 2004; 119(5):693-705.
  • [59]Abranches E, Bekman E, Henrique D. Generation and characterization of a novel mouse embryonic stem cell line with a dynamic reporter of Nanog expression. PLoS One. 2013; 8(3):e59928.
  • [60]Gossler A, Joyner AL, Rossant J, Skarnes WC. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989; 244(4903):463-465.
  • [61]Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K et al.. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech. 2009; 2(9–10):508-515.
  • [62]Downs KM, Davies T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development. 1993; 118(4):1255-1266.
  • [63]Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development. 2013; 140(5):965-975.
  • [64]Lou X, Kang M, Xenopoulos P, Munoz-Descalzo S, Hadjantonakis AK. A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Reports. 2014; 2(3):382-397.
  • [65]Saiz N, Kang M, Schrode N, Lou X, Hadjantonakis AK. Quantitative analysis of protein expression and lineage specification in mouse preimplantation embryos. JoVE 2015, in press.
  文献评价指标  
  下载次数:31次 浏览次数:27次