| BMC Genomics | |
| What do all the (human) micro-RNAs do? | |
| Jörn Lötsch1  Alfred Ultsch2  | |
| [1] Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany | |
| 关键词: Genetics; Knowledge-discovery; Machine-learning; Computational biology; Regulation; Gene expression; Micro-RNA; | |
| Others : 1092509 DOI : 10.1186/1471-2164-15-976 |
|
| received in 2014-05-21, accepted in 2014-10-13, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Micro-RNAs (miRNA) are attributed to the systems biological role of a regulatory mechanism of the expression of protein coding genes. Research has identified miRNAs dysregulations in several but distinct pathophysiological processes, which hints at distinct systems-biology functions of miRNAs. The present analysis approached the role of miRNAs from a genomics perspective and assessed the biological roles of 2954 genes and 788 human miRNAs, which can be considered to interact, based on empirical evidence and computational predictions of miRNA versus gene interactions.
Results
From a genomics perspective, the biological processes in which the genes that are influenced by miRNAs are involved comprise of six major topics comprising biological regulation, cellular metabolism, information processing, development, gene expression and tissue homeostasis. The usage of this knowledge as a guidance for further research is sketched for two genetically defined functional areas: cell death and gene expression. Results suggest that the latter points to a fundamental role of miRNAs consisting of hyper-regulation of gene expression, i.e., the control of the expression of such genes which control specifically the expression of genes.
Conclusions
Laboratory research identified contributions of miRNA regulation to several distinct biological processes. The present analysis transferred this knowledge to a systems-biology level. A comprehensible and precise description of the biological processes in which the genes that are influenced by miRNAs are notably involved could be made. This knowledge can be employed to guide future research concerning the biological role of miRNA (dys-) regulations. The analysis also suggests that miRNAs especially control the expression of genes that control the expression of genes.
【 授权许可】
2014 Ultsch and Lötsch; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150128185153617.pdf | 2138KB | ||
| Figure 5. | 92KB | Image | |
| Figure 4. | 61KB | Image | |
| Figure 3. | 59KB | Image | |
| Figure 2. | 77KB | Image | |
| Figure 1. | 74KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
- [2]He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7):522-531.
- [3]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425(6956):415-419.
- [4]Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG: Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinform 2009, 25(23):3049-3055.
- [5]Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10(2):185-191.
- [6]Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409(6818):363-366.
- [7]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-D144.
- [8]Chuang JC, Jones PA: Epigenetics and microRNAs. Pediatr Res 2007, 61(5 Pt 2):24R-29R.
- [9]Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA. Science 2012, 337(6099):1159-1161.
- [10]Ruvkun G: Molecular biology. Glimpses of a tiny RNA world. Science 2001, 294(5543):797-799.
- [11]Lee R, Feinbaum R, Ambros V: A short history of a short RN. Cell 2004, 116(2 Suppl):S89-S92. 81 p following S96
- [12]Esteller M: Non-coding RNAs in human disease. Nat Rev Genet 2011, 12(12):861-874.
- [13]Croce CM, Calin GA: miRNAs, cancer, and stem cell division. Cell 2005, 122(1):6-7.
- [14]Small EM, Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature 2011, 469(7330):336-342.
- [15]Kulkarni S, Savan R, Qi Y, Gao X, Yuki Y, Bass SE, Martin MP, Hunt P, Deeks SG, Telenti A, Pereyra F, Goldstein D, Wolinsky S, Walker B, Young HA, Carrington M: Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 2011, 472(7344):495-498.
- [16]Niederberger E, Kynast K, Lötsch J, Geisslinger G: MicroRNAs as new players in the pain game. Pain 2011, 152(7):1455-1458.
- [17]Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X: MicroRNA: function, detection, and bioanalysis. Chem Rev 2013, 113(8):6207-6233.
- [18]Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, Jian TY, Lin FM, Chang TH, Weng SL, Liao KW, Liao IE, Liu CC, Huang HD: miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2014, 42(Database issue):D78-D85.
- [19]Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG: The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 2009, 37(Database issue):D155-D158.
- [20]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
- [21]Hu P, Bader G, Wigle DA, Emili A: Computational prediction of cancer-gene function. Nat Rev Cancer 2007, 7(1):23-34.
- [22]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
- [23]Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Ami GOH, Web Presence Working G: AmiGO: online access to ontology and annotation data. Bioinformatics 2009, 25(2):288-289.
- [24]Keller A, Backes C, Al-Awadhi M, Gerasch A, Kuntzer J, Kohlbacher O, Kaufmann M, Lenhof HP: GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinform 2008, 9:552. BioMed Central Full Text
- [25]Seal RL, Gordon SM, Lush MJ, Wright MW, Bruford EA: genenames.org: the HGNC resources in 2011. Nucleic Acids Res 2011, 39(Database issue):D514-D519.
- [26]Venn J: On the diagrammatic and mechanical representation of propositions and reasonings. Dublin Philos Mag J Sci 1880, 9:1-18.
- [27]Zheng H, Fu R, Wang J-T, Liu Q, Chen H, Jiang S-W: Advances in the Techniques for the Prediction of microRNA Targets. Int J Mol Sci 2013, 14(4):8179-8187.
- [28]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27(1):91-105.
- [29]Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-1146.
- [30]Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R: The Gene Ontology Annotation (GOA) Database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Res 2004, 32(Database issue):D262-D266.
- [31]Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, Kersey P, Mulder N, Oinn T, Maslen J, Cox A, Apweiler R: The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res 2003, 13(4):662-672.
- [32]Thulasiraman K, Swamy MNS: Graphs: Theory and Algorithms. New York; NY: Wiley; 1992. [u.a.]
- [33]Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, Muller R, Meese E, Lenhof HP: GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res 2007, 35(Web Server issue):W186-W192.
- [34]Hochberg Y: A Sharper bonferroni procedure for multiple tests of significance. Biometrika 1988, 75(4):800-802.
- [35]Ultsch A, Lötsch J: Functional abstraction as a method to discover knowledge in gene ontologies. PLoS One 2014, 9(2):e90191.
- [36]Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A: Kinetic signatures of microRNA modes of action. RNA 2012, 18(9):1635-1655.
- [37]Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
- [38]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19(1):92-105.
- [39]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
- [40]Ullah S, John P, Bhatti A: MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 2013.
- [41]Pauley KM, Cha S, Chan EK: MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009, 32(3–4):189-194.
- [42]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
- [43]Alvarez-Garcia I, Miska EA: MicroRNA functions in animal development and human disease. Development 2005, 132(21):4653-4662.
- [44]Pufall MA, Lee GM, Nelson ML, Kang H-S, Velyvis A, Kay LE, McIntosh LP, Graves BJ: Variable control of Ets-1 DNA binding by multiple phosphates in an unstructured region. Science 2005, 309(5731):142-145.
- [45]Amaral PP, Dinger ME, Mercer TR, Mattick JS: The eukaryotic genome as an RNA machine. Science 2008, 319(5871):1787-1789.
- [46]He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ: A microRNA component of the p53 tumour suppressor network. Nature 2007, 447(7148):1130-1134.
- [47]Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, Nassar MA, Abrahamsen B, Dickenson A, Cobb BS, Merkenschlager M, Wood JN: Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 2010, 30(32):10860-10871.
- [48]Tan KS, Choi H, Jiang X, Yin L, Seet JE, Patzel V, Engelward BP, Chow VT: Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genomics 2014, 15:587. BioMed Central Full Text
- [49]Kim D, Shin H, Joung JG, Lee SY, Kim JH: Intra-relation reconstruction from inter-relation: miRNA to gene expression. BMC Syst Biol 2013, 7(Suppl 3):S8. BioMed Central Full Text
PDF