期刊论文详细信息
BMC Cancer
Inhibition of GPR30 by estriol prevents growth stimulation of triple-negative breast cancer cells by 17β-estradiol
Rainer Girgert1  Günter Emons1  Carsten Gründker1 
[1] Department of Obstetrics and Gynecology, University Medicine Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
关键词: Signal transduction;    Estriol;    GPR30;    Targeted therapy;    Triple-negative breast cancer;   
Others  :  1117909
DOI  :  10.1186/1471-2407-14-935
 received in 2014-07-31, accepted in 2014-12-03,  发布年份 2014
PDF
【 摘 要 】

Background

Due to the lack of ERα, triple negative breast cancers (TNBCs) are not susceptible to endocrine therapy using antiestrogens. However, the majority of TNBCs express the membrane bound estrogen receptor GPR30. We have recently shown that knock-down of GPR30 expression prevented growth stimulation of TNBC cell lines by 17β-estradiol. Now we analyzed whether specific inhibition of GPR30 represents a new option for therapy of TNBC.

Methods

Growth of TNBC cells was assessed using Alamar-blue colorimetric assay. Activation of c-Src and EGF-receptor was assessed using Western blots. Expression of c-fos, cyclin D1 and aromatase was quantified by RT-PCR. Gα-specific signaling of GPR30 was analyzed by electrophoretic mobility shift assay.

Results

HCC1806 cells showed the highest GPR30 expression, in HCC70 cells it was clearly lower, in MDA-MB-231 cells it was lowest. 10-8 M 17β-estradiol significantly increased proliferation of HCC1806 cells to 134 ± 12% of control (p < 0.01). Proliferation of HCC70 cells was slightly increased to 116 ± 8% of control. Estriol significantly reduced cell number of HCC1806 cells to 16 ± 12% (p < 0.01). Cell number of HCC70 cells and of MDA-MB-231 cells was reduced to 68 ± 25% and to 61 ± 10%, respectively.

Activity of Src kinase increased to 150 ± 10% (p < 0.05) by 10-8 M 17β-estradiol treatment in HCC1806 and to 220 ± 20% in HCC70 cells (p < 0.01). Estriol treatment completely inhibited 17β-estradiol-induced p-src activation. Transactivation of EGF-receptor increased by estradiol treatment to 350% in HCC1806 and to 280% in HCC70 cells. Estriol completely suppressed EGF-receptor transactivation. c-fos expression increased to 260% and to 190%, respectively. Estriol reduced this induction to 160% (HCC1806) and below control in HCC70 cells. Cyclin D1 was induced to 290% (HCC1806) and 170% (HCC70) and completely inhibited by estriol. 17β-estradiol increased CREB-phosphorylation to 400%. Binding of phospho-CREB to a CRE of cyclin D1 was enhanced to 320%.

Conclusion

Specific pharmacological inhibition of GPR30 might become a promising targeted therapy for TNBC in future.

【 授权许可】

   
2014 Girgert et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150206012552853.pdf 1448KB PDF download
Figure 7. 34KB Image download
Figure 6. 30KB Image download
Figure 5. 54KB Image download
Figure 4. 57KB Image download
Figure 3. 22KB Image download
Figure 2. 85KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, Buyse M, Baum M, Buzdar A, Colleoni M, Coombes C, Snowdon C, Gnant M, Jakesz R, Kaufmann M, Boccardo F, Godwin J, Davies C, Peto R: Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 2010, 28(3):509-518.
  • [2]Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM: The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007, 13(8):2329-2334.
  • [3]Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA: Poly(ADP-Ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res 2010, 16(19):4702-4710.
  • [4]Telli ML, Ford JM: PARP inhibitors in breast cancer. Clin Adv Hematol Oncol 2010, 8(9):629-635.
  • [5]Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr: Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000, 14(10):1649-1660.
  • [6]Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER: A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005, 307(5715):1625-1630.
  • [7]Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER: ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 2002, 16(1):100-115.
  • [8]Steiman J, Peralta EA, Louis S, Kamel O: Biology of the estrogen receptor, GPR30, in triple negative breast cancer. Am J Surg 2013, 206(5):698-703.
  • [9]Aronica SM, Kraus WL, Katzenellenbogen BS: Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci U S A 1994, 91(18):8517-8521.
  • [10]Visram H, Greer PA: 17beta-estradiol and tamoxifen stimulate rapid and transient ERK activationin MCF-7 cells via distinct signaling mechanisms. Cancer Biol Ther 2006, 5(12):1677-1682.
  • [11]Lazennec G, Thomas JA, Katzenellenbogen BS: Involvement of cyclic AMP response element binding protein (CREB) and estrogen receptor phosphorylation in the synergistic activation of the estrogen receptor by estradiol and protein kinase activators. J Steroid Biochem Mol Biol 2001, 77(4–5):193-203.
  • [12]Girgert R, Emons G, Grundker C: Inactivation of GPR30 reduces growth of triple-negative breast cancer cells: possible application in targeted therapy. Breast Cancer Res Treat 2012, 134(1):199-205.
  • [13]Chen JQ, Russo J: ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta 2009, 1796(2):162-175.
  • [14]Dennis MK, Field AS, Burai R, Ramesh C, Petrie WK, Bologa CG, Oprea TI, Yamaguchi Y, Hayashi S, Sklar LA, Hathaway HJ, Arterburn JB, Prossnitz ER: Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J Steroid Biochem Mol Biol 2011, 127(3–5):358-366.
  • [15]Lappano R, Rosano C, De Marco P, De Francesco EM, Pezzi V, Maggiolini M: Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol 2010, 320(1–2):162-170.
  • [16]Girgert R, Bartsch C, Hill SM, Kreienberg R, Hanf V: Tracking the elusive antiestrogenic effect of melatonin: a new methodological approach. Neuro Endocrinol Lett 2003, 24(6):440-444.
  • [17]Stanley ER, Palmer RE, Sohn U: Development of methods for the quantitative in vitro analysis of androgen-dependent and autonomous Shionogi carcinoma 115 cells. Cell 1977, 10(1):35-44.
  • [18]Girgert R, Hanf V, Emons G, Grundker C: Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J Pineal Res 2009, 47(1):23-31.
  • [19]Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ: Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 1997, 45(3):607-617.
  • [20]Lin BC, Suzawa M, Blind RD, Tobias SC, Bulun SE, Scanlan TS, Ingraham HA: Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation. Cancer Res 2009, 69(13):5415-5423.
  • [21]Andrisani OM: CREB-mediated transcriptional control. Crit Rev Eukaryot Gene Expr 1999, 9(1):19-32.
  • [22]Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS: MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 2002, 22(8):2871-2881.
  • [23]Scaling AL, Prossnitz ER, Hathaway HJ: GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast. Horm Cancer 2014, 5(3):146-160.
  • [24]Wang D, Hu L, Zhang G, Zhang L, Chen C: G protein-coupled receptor 30 in tumor development. Endocrine 2010, 38(1):29-37.
  • [25]Brunello A, Borgato L, Basso U, Lumachi F, Zagonel V: Targeted approaches to triple-negative breast cancer: current practice and future directions. Curr Med Chem 2013, 20(5):605-612.
  • [26]Lappano R, Pisano A, Maggiolini M: GPER Function in Breast Cancer: an overview. Front Endocrinol (Lausanne) 2014, 5:66.
  • [27]Smith HO, Arias-Pulido H, Kuo DY, Howard T, Qualls CR, Lee SJ, Verschraegen CF, Hathaway HJ, Joste NE, Prossnitz ER: GPR30 predicts poor survival for ovarian cancer. Gynecol Oncol 2009, 114(3):465-471.
  • [28]Jacobson HI, Lemanski N, Agarwal A, Narendran A, Turner KE II, Bennett JA, Andersen TT: A proposed unified mechanism for the reduction of human breast cancer risk by the hormones of pregnancy. Cancer Prev Res (Phila) 2010, 3(2):212-220.
  • [29]Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS, Perou CM: Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 2008, 109(1):123-139.
  • [30]Goodwin TM: A role for estriol in human labor, term and preterm. Am J Obstet Gynecol 1999, 180(1 Pt 3):S208-S213.
  • [31]Lappano R, Santolla MF, Pupo M, Sinicropi MS, Caruso A, Rosano C, Maggiolini M: MIBE acts as antagonist ligand of both estrogen receptor alpha and GPER in breast cancer cells. Breast Cancer Res 2012, 14(1):R12. BioMed Central Full Text
  • [32]Burai R, Ramesh C, Nayak TK, Dennis MK, Bryant BK, Prossnitz ER, Arterburn JB: Synthesis and characterization of tricarbonyl-Re/Tc(I) chelate probes targeting the G protein-coupled estrogen receptor GPER/GPR30. PLoS One 2012, 7(10):e46861.
  文献评价指标  
  下载次数:95次 浏览次数:27次