期刊论文详细信息
BMC Neuroscience
A neurochemical map of the developing amphioxus nervous system
Mario Pestarino1  Michael Schubert2  Paola Ramoino1  Luca Moronti1  Simona Candiani1 
[1] Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Viale Benedetto XV, 5, 16132 Genoa, Italy;Institut de Génomique Fonctionnelle de Lyon (UCBL, CNRS UMR5242, ENSL, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, de Lyon, France
关键词: Neurotransmitter;    Neural patterning;    Lancelet;    Chordate evolution;    Cephalochordate;    Branchiostoma;   
Others  :  1170694
DOI  :  10.1186/1471-2202-13-59
 received in 2011-10-11, accepted in 2012-04-27,  发布年份 2012
PDF
【 摘 要 】

Background

Amphioxus, representing the most basal group of living chordates, is the best available proxy for the last invertebrate ancestor of the chordates. Although the central nervous system (CNS) of amphioxus comprises only about 20,000 neurons (as compared to billions in vertebrates), the developmental genetics and neuroanatomy of amphioxus are strikingly vertebrate-like. In the present study, we mapped the distribution of amphioxus CNS cells producing distinctive neurochemicals. To this end, we cloned genes encoding biosynthetic enzymes and/or transporters of the most common neurotransmitters and assayed their developmental expression in the embryo and early larva.

Results

By single and double in situ hybridization experiments, we identified glutamatergic, GABAergic/glycinergic, serotonergic and cholinergic neurons in developing amphioxus. In addition to characterizing the distribution of excitatory and inhibitory neurons in the developing amphioxus CNS, we observed that cholinergic and GABAergic/glycinergic neurons are segmentally arranged in the hindbrain, whereas serotonergic, glutamatergic and dopaminergic neurons are restricted to specific regions of the cerebral vesicle and the hindbrain. We were further able to identify discrete groups of GABAergic and glutamatergic interneurons and cholinergic motoneurons at the level of the primary motor center (PMC), the major integrative center of sensory and motor stimuli of the amphioxus nerve cord.

Conclusions

In this study, we assessed neuronal differentiation in the developing amphioxus nervous system and compiled the first neurochemical map of the amphioxus CNS. This map is a first step towards a full characterization of the neurotransmitter signature of previously described nerve cell types in the amphioxus CNS, such as motoneurons and interneurons.

【 授权许可】

   
2012 Candiani et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417024024662.pdf 1812KB PDF download
Figure 13. 54KB Image download
Figure 12. 37KB Image download
Figure 11. 74KB Image download
Figure 10. 105KB Image download
Figure 9. 93KB Image download
Figure 8. 72KB Image download
Figure 7. 58KB Image download
Figure 6. 100KB Image download
Figure 5. 63KB Image download
Figure 4. 161KB Image download
Figure 3. 23KB Image download
Figure 2. 16KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

【 参考文献 】
  • [1]Holland ND: Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 2003, 4:617-627.
  • [2]Holland LZ: Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 2009, 10:736-746.
  • [3]Lacalli TC: New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. Philos Trans R Soc Lond B Biol Sci 2001, 356:1565-1572.
  • [4]Wada H, Saiga H, Satoh N, Holland PW: Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 1998, 125:1113-1122.
  • [5]Wada H, Satoh N: Patterning the protochordate neural tube. Curr Opin Neurobiology 2001, 11:16-21.
  • [6]Takahashi T, Holland PW: Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Development 2004, 131:3285-3294.
  • [7]Putnam NH: The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453:1064-1071.
  • [8]Holland LZ: The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 2008, 18:1100-1111.
  • [9]Guthrie DM: The physiology and structure of the nervous system of amphioxus, Branchiostoma lanceolatum. Symposia of the Zoological Society of London 1975, 36:43-80.
  • [10]Bone Q: The central nervous system in amphioxus. J Comp Neurol 1960, 115:27-51.
  • [11]Lacalli TC, Holland ND, West JE: Landmarks in the Anterior Central Nervous System of Amphioxus Larvae. Philos Trans R Soc Lond Biol 1994, 344:165-185.
  • [12]Wicht H, Lacalli TC: The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool 2005, 83:122-150.
  • [13]Holland LZ, Holland ND: Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol 1999, 9:596-602.
  • [14]Williams NA, Holland PWH: Old head on young shoulders. Nature 1996, 383:490.
  • [15]Holland LZ, Holland ND: Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development 1996, 122:1829-1838.
  • [16]Wada H, Garcia-Fernàndez J, Holland PWH: Colinear and segmental expression of amphioxus hox genes. Dev Biol 1999, 213:131-141.
  • [17]Schubert M, Holland ND, Laudet V, Holland LZ: A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 2006, 296:190-202.
  • [18]Holland PWH, Holland LZ, Williams NA, Holland ND: An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 1992, 116:653-661.
  • [19]Jackman WR, Langeland JA, Kimmel CB: islet reveals segmentation in the Amphioxus hindbrain homolog. Dev Biol 2000, 220:16-26.
  • [20]Bardet PL, Schubert M, Horard B, Holland LZ, Laudet V, Holland ND, Vanacker JM: Expression of estrogen-receptor related receptors in amphioxus and zebrafish: implications for the evolution of posterior brain segmentation at the invertebrate-to-vertebrate transition. Evol Dev 2005, 7:223-233.
  • [21]Candiani S, Oliveri D, Parodi M, Castagnola P, Pestarino M: AmphiD1/β, a dopamine D1/β-adrenergic receptor from the amphioxus Branchiostoma floridae: evolutionary aspects of the catecholaminergic system during development. Dev Genes Evol 2005, 215:631-638.
  • [22]Candiani S, Lacalli TC, Parodi M, Oliveri D, Pestarino M: The cholinergic gene locus in amphioxus: molecular characterization and developmental expression patterns. Dev Dynamics 2008, 237:1399-1411.
  • [23]Holland ND, Holland LZ: Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet, Branchiostoma floridae. Acta Zool 1993, 74:195-204.
  • [24]Candiani S, Augello A, Oliveri D, Passalacqua M, Pennati R, De Bernardi F, Pestarino M: Immunocytochemical localization of serotonin in embryos, larvae and adults of the lancelet, Branchiostoma floridae. Histochem J 2001, 33:413-420.
  • [25]Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J: The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 1998, 18:9733-9750.
  • [26]Mazet F, Masood S, Luke GN, Holland ND, Shimeld SM: Expression of AmphiCoe, an amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons. Genesis 2004, 38:58-65.
  • [27]Kaltenbach SL, Yu JK, Holland ND: The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus. Evol Dev 2009, 11(2):142-151.
  • [28]Kupfermann I: Functional studies of cotransmission. Physiol Revs 1991, 71:683-732.
  • [29]Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA: Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 2004, 480(3):264-280.
  • [30]Barreiro-Iglesias A, Cornide-Petronio ME, Anadón R, Rodicio MC: Serotonin and GABA are colocalized in restricted groups of neurons in the larval sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 2009, 215(4):435-443.
  • [31]Uemura H, Tezuka Y, Hasegawa C, Kobayashi H: Immunohistochemical investigation of neuropeptides in the central nervous system of the amphioxus, Branchiostoma belcheri. Cell Tissue Res 1994, 277:279-287.
  • [32]Pestarino M, Lucaroni B: FMRFamide-like immunoreactivity in the central nervous system of the lancelet Branchiostoma lanceolatum. Isr J Zool 1996, 42:227-234.
  • [33]Moret F, Guilland JC, Coudouel S, Rochette L, Vernier P: Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol 2004, 468:135-150.
  • [34]Anadón R, Adrio F, Rodríguez-Moldes I: Distribution of GABA immunoreactivity in the central and peripheral nervous system of amphioxus (Branchiostoma lanceolatum Pallas). J Comp Neurol 1998, 401:293-307.
  • [35]Pascual-Anaya J, D'Aniello S: Free amino acids in the nervous system of the amphioxus Branchiostoma lanceolatum. A comparative study. Int J Biol Sci 2006, 2(2):87-92.
  • [36]Meinertzhagen IA, Lemaire P, Okamura Y: The neurobiology of the ascidian larva: recent developments in an ancient chordate. Annu Rev Neurosci 2004, 27:453-485.
  • [37]Lacalli TC, Kelly SJ: Ventral neurons in the anterior nerve cord of amphioxus larvae. I. An inventory of cell types and synaptic patterns. J Morphol 2003, 257:190-211.
  • [38]Lacalli TC: The dorsal compartment locomotory control system in amphioxus larvae. J Morphol 2002, 252:227-237.
  • [39]Lacalli TC: Ventral neurons in the anterior nerve cord of amphioxus larvae. II. Further data on the pacemaker circuit. J Morphol 2003, 257:212-218.
  • [40]Woolf NJ: Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 1991, 37:475-524.
  • [41]Lacalli TC: Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Phil Trans R Soc Lond B 1996, 351:243-263.
  • [42]Lacalli TC: Sensory pathways in amphioxus larvae I. Constituent fibres of the rostral and anterodorsal nerves, their targets and evolutionary significance. Acta Zool (Stock) 2002, 83:149-166.
  • [43]Jackson FR, Newby LM, Kulkarni SJ: Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxlyase. J Neurochem 1990, 54:1068-1078.
  • [44]McIntire S, Jorgensen EM, Horvitz HR: Genes required for GABA function in the nematode Caenorhabditis elegans. Nature 1993, 364:334-337.
  • [45]Mueller T, Vernier P, Wullimann MF: A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. J Comp Neurol 2006, 494:620-634.
  • [46]Martyniuk CJ, Awad R, Hurley R, Finger TE, Trudeau VL: Glutamic acid decarboxylase 65, 67, and GABA-transaminase mRNA expression and total enzyme activity in the goldfish (Carassius auratus) brain. Brain Res 2007, 1147:154-166.
  • [47]Zega G, Biggiogero M, Groppelli S, Candiani S, Oliveri D, Parodi M, Pestarino M, Bernardi F, Pennati R: Developmental expression of glutamic acid decarboxylase andof γ-aminnobutyric acid type B Receptors in the ascidian Ciona intestinalis. J Comp Neurol 2008, 506:489-505.
  • [48]Roberts A, Dale N, Ottersen OP, Storm-Mathisen J: Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine. Development 1988, 103(3):447-461.
  • [49]Villar-Cerviño V, Barreiro-Iglesias A, Anadón R, Rodicio MC: Development of glycine immunoreactivity in the brain of the sea lamprey: comparison with gamma-aminobutyric acid immunoreactivity. J Comp Neurol 2009, 512:747-767.
  • [50]Villar-Cerviño V, Barreiro-Iglesias A, Rodicio MC, Anadón R: D-serine is distributed in neurons in the brain of the sea lamprey. J Comp Neurol 2010, 518:1688-1710.
  • [51]Horie T, Nakagawa M, Sasakura Y, Kusakabe TG: Cell type and function of neurons in the ascidian nervous system. Dev Growth Differ 2009, 51:207-220.
  • [52]Antzoulatos EG, Byrne JH: Learning insights transmitted by glutamate. Trends Neurosci 2004, 27:555-560.
  • [53]Collingridge GL, Lester RAJ: Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 1989, 40:143-210.
  • [54]Fyk-Kolodziej B, Dzhagaryan A, Qin P, Pourcho RG: Immunocytochemical localization of three vesicular glutamate transporters in the cat retina. J Comp Neurol 2004, 475:518-530.
  • [55]Panzanelli P, Valli P, Cantino D, Fasolo A: Glutamate and carnosine in the vestibular system of the frog. Brain Res 1994, 662:293-296.
  • [56]Demêmes D, Wenthold RJ, Moniot B, Sans A: Glutamate-like immunoreactivity in the peripheral vestibular system of mammals. Hear Res 1990, 46:261-269.
  • [57]Harper A, Blythe WR, Grossman G, Petrusz P, Prazma J, Pillsbury HC: Immunocytochemical localization of aspartate and glutamate in the peripheral vestibular system. Hear Res 1995, 86:171-182.
  • [58]Horie T, Kusakabe T, Tsuda M: Glutamatergic networks in theCiona intestinalislarva. J Comp Neurol 2008, 508:249-263.
  • [59]Satoh G, Wang Y, Zhang P, Satoh N: Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J Exp Zool 2001, 291:354-364.
  • [60]Yasui K, Tabata S, Ueki T, Uemura M, Zhang SC: Early development of the peripheral nervous system in a lancelet species. J Comp Neurol 1998, 393:415-425.
  • [61]Candiani S, Oliveri D, Parodi M, Bertini E, Pestarino M: Expression of AmphiPOU-IV in the developing neural tube and epidermal sensory neural precursors in amphioxus supports a conserved role of class IV POU genes in the sensory cells development. Dev Genes Evol 2006, 216:623-633.
  • [62]Candiani S, Moronti L, Pennati R, De Bernardi F, Benfenati F, Pestarino M: The synapsin gene family in basal chordates: evolutionary perspectives in metazoans. BMC Evol Biol 2010, 10:32. BioMed Central Full Text
  • [63]Rasmussen SL, Holland LZ, Schubert M, Beaster-Jones L, Holland ND: Amphioxus AmphiDelta: evolution of Delta protein structure, segmentation, and neurogenesis. Genesis 2007, 45:113-22.
  • [64]Marek KW, Kurtz LM, Spitzer NC: cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat Neurosci 2010, 13:944-950.
  • [65]Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E: Development of the locomotor network in zebrafish. Prog Neurobiol 2002, 68:85-111.
  • [66]Zega G, Pennati R, Fanzago A, De Bernardi F: Serotonin involvement in the metamorphosis of the hydroid Eudendrium racemosum. Int J Dev Biol 2007, 51:307-313.
  • [67]Makrosova TG, Zaitseva OV, Smirnov RV: Monoamine- and peptide-containing elements in the nemertine digestive tract. Zh Evol Biokhim Fiziol 2007, 43:60-68.
  • [68]Pires A, Woollacott RM: Serotonin and dopamine have opposite effects on phototaxis in larvae of the bryozoan Bugula neritina. Biol Bull 1997, 192:399-409.
  • [69]Csaba G: Presence in and effects of pineal indoleamines at very low level of phylogeny. Experientia 1993, 49:627-634.
  • [70]Anctil M, Hurtubise P, Gillis MA: Tyrosine hydroxylase and dopamine-beta-hydroxylase immunoreactivities in the cnidarian Renilla koellikeri. Cell Tissue Res 2002, 310(1):109-117.
  • [71]Goridis C, Rohrer H: Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 2002, 3(7):531-541.
  • [72]Kah O, Chambolle P: Serotonin in the brain of the goldfish, Carassius auratus. An immunocytochemical study. Cell Tissue Res 1983, 234:319-333.
  • [73]Jacobs BL, Azmitia EC: Structure and function of the brain serotonin system. Physiol Rev 1992, 72:165-229.
  • [74]Khan IA, Thomas P: Immunocitochemical localization of serotonin and gonadotropin-releasing hormone in the brain and pituitary gland of the Atlantic croaker Micropogonias undulates. Gen Comp Endocrinol 1993, 91:167-180.
  • [75]Oliveri D, Candiani S, Parodi M, Bertini E, Pestarino M: A serotonergic system in the brain of the Antarctic fish, Trematomus bernacchii. Polar Biol 2005, 28:366-371.
  • [76]Wurst W, Bally-Cuif L: Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001, 2:99-108.
  • [77]Pennati R, Candiani S, Biggiogero M, Zega G, Groppelli S, Oliveri D, Parodi M, De Bernardi F, Pestarino M: Developmental expression of tryptophan hydroxylase gene in Ciona intestinalis. Dev Genes Evol 2007, 217:307-313.
  • [78]Holland LZ, Kene M, Williams N, Holland ND: Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 1997, 124:1723-1732.
  • [79]Kozmik Z, Holland ND, Kalousova A, Paces J, Schubert M, Holland LZ: Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 1999, 126:1295-1304.
  • [80]Holland LZ, Holland PWH, Holland ND, Ferraris JD, Palumbi SR: Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes: amphioxus versus vertebrates. In In Molecular Zoology: Advances, Strategies, and Protocols. New York: Wiley-Liss; 1996:267-282.
  • [81]JGI (Joint Genome Institute). [ http://genome.jgi-psf.org/ webcite]
  • [82]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [83]GenScan. [ http://genes.mit.edu/GENSCAN.html webcite]
  • [84]GenomeScan. [ http://genes.mit.edu/genomescan.html webcite]
  • [85]Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods Enzymol 1996, 226:383-402.
  • [86]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28(10):2731-2739.
  文献评价指标  
  下载次数:51次 浏览次数:38次