期刊论文详细信息
BMC Evolutionary Biology
Differences in insect resistance between tomato species endemic to the Galapagos Islands
Ben Vosman3  Richard GF Visser3  Ric CH de Vos1  Adriaan W van Heusden3  Alejandro F Lucatti2 
[1] Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands;Graduate School Experimental Plant Sciences. Wageningen Campus. Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands;Wageningen UR Plant Breeding, Wageningen University and Research, Centre, P.O. Box 386, Wageningen, AJ 6700, The Netherlands
关键词: Selection pressure;    Acyl sugars;    Trichomes;    Whitefly;    Solanum cheesmaniae;    Solanum galapagense;    Bemisia tabaci;   
Others  :  1086558
DOI  :  10.1186/1471-2148-13-175
 received in 2013-04-04, accepted in 2013-08-21,  发布年份 2013
PDF
【 摘 要 】

Background

The Galapagos Islands constitute a highly diverse ecosystem and a unique source of variation in the form of endemic species. There are two endemic tomato species, Solanum galapagense and S. cheesmaniae and two introduced tomato species, S. pimpinellifolium and S. lycopersicum. Morphologically the two endemic tomato species of the Galapagos Islands are clearly distinct, but molecular marker analysis showed no clear separation. Tomatoes on the Galapagos are affected by both native and exotic herbivores. Bemisia tabaci is an important introduced insect species that feeds on a wide range of plants. In this article, we address the question whether the differentiation between S. galapagense and S. cheesmaniae may be related to differences in susceptibility towards phloem-feeders and used B. tabaci as a model to evaluate this.

Results

We have characterized 12 accessions of S. galapagense, 22 of S. cheesmaniae, and one of S. lycopersicum as reference for whitefly resistance using no-choice experiments. Whitefly resistance was found in S. galapagense only and was associated with the presence of relatively high levels of acyl sugars and the presence of glandular trichomes of type I and IV. Genetic fingerprinting using 3316 SNP markers did not show a clear differentiation between the two endemic species. Acyl sugar accumulation as well as the climatic and geographical conditions at the collection sites of the accessions did not follow the morphological species boundaries.

Conclusion

Our results suggest that S. galapagense and S. cheesmaniae might be morphotypes rather than two species and that their co-existence is likely the result of selective pressure.

【 授权许可】

   
2013 Lucatti et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116012940660.pdf 812KB PDF download
Figure 5. 31KB Image download
Figure 4. 32KB Image download
Figure 3. 73KB Image download
Figure 2. 68KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Darwin SC, Knapp S, Peralta IE: Taxonomy of tomatoes in the Galápagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodivers 2003, 1(01):29-53.
  • [2]Peralta IE, Spooner DM, Knapp S: Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon: Solanaceae). Ann Arbor, MI: American Society of Plant Taxonomists; 2008.
  • [3]Darwin SC: The systematics and genetics of tomatoes on the Galápagos Islands (Solanum, Solanaceae). University College London: Ph.D. Thesis; 2009.
  • [4]Mallet J: A species definition for the modern synthesis. Trends Ecol Evol 1995, 10(7):294-299.
  • [5]Nuez F, Prohens J, Blanca JM: Relationships, origin, and diversity of Galápagos tomatoes: implications for the conservation of natural populations. Am J Bot 2004, 91(1):86-99.
  • [6]Peralta IE, Knapp S, Spooner DM, Lammers TG: New species of wild tomatoes (Solanum Section Lycopersicon: Solanaceae) from northern Peru. Syst Bot 2005, 30(2):424-434.
  • [7]Spooner DM, Peralta IE, Knapp S: Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 2005, 54(1):43-61.
  • [8]Walsh SJ, Mena CF: Science and Conservation in the Galapagos Islands : Frameworks & Perspectives. New York, NY: Springer New York; 2013.
  • [9]Causton CE, Peck SB, Sinclair BJ, Roque-Albelo L, Hodgson CJ, Landry B: Alien insects: threats and implications for conservation of Galápagos Islands. Ann Entomol Soc Am 2006, 99(1):121-143.
  • [10]Valverde RA, Sim J, Lotrakul P: Whitefly transmission of sweet potato viruses. Virus Res 2004, 100(1):123-128.
  • [11]Muigai SG, Schuster DJ, Snyder JC, Scott JW, Bassett MJ, McAuslane HJ: Mechanisms of resistance in Lycopersicon germplasm to the whitefly Bemisia argentifolii. Phytoparasitica 2002, 30(4):347-360.
  • [12]Dinsdale A, Cook L, Riginos C, Buckley YM, Barro PD: Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) Mitochondrial Cytochrome Oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 2010, 103(2):196-208.
  • [13]De Barro PJ: The Bemisia tabaci species complex: questions to guide future research. Journal of Integrative Agriculture 2012, 11(2):187-196.
  • [14]Firdaus S, Vosman B, Hidayati N, Jaya Supena ED, Visser RG, Van Heusden AW: The Bemisia tabaci species complex: additions from different parts of the world. Insect Sci 2012, 00:1-11.
  • [15]Liu S-s, Colvin J, De Barro PJ: Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture 2012, 11(2):176-186.
  • [16]Simmons AT, Gurr GM: Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agricultural and Forest Entomology 2005, 7(4):265-276.
  • [17]Firdaus S, Heusden A, Hidayati N, Supena E, Visser R, Vosman B: Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 2012, 187(1):31-45.
  • [18]Rausher MD: Co-evolution and plant resistance to natural enemies. Nature 2001, 411(6839):857-864.
  • [19]Weber MG, Agrawal AA: Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol Evol 2012, 27(7):394-403.
  • [20]Gonzales-Vigil E, Hufnagel DE, Kim J, Last RL, Barry CS: Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Plant J 2012, 71(6):921-935.
  • [21]Kim J, Kang K, Gonzales-Vigil E, Shi F, Daniel Jones A, Barry CS, Last RL: Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the acyltransferase2 locus in the wild tomato Solanum habrochaites. Plant Physiol 2012, 160(4):1854-1870.
  • [22]Firdaus S, Heusden A, Hidayati N, Supena E, Mumm R, Vos RH, Visser RF, Vosman B: Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 2013, 126(6):1487-1501.
  • [23]Viquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser R, Finkers R, Van Heusden A: Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 2013, 14(1):354. BioMed Central Full Text
  • [24]Jacobs MJ, Vosman B, Vleeshouwers VAA, Visser RF, Henken B, Berg R: A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. Theor Appl Genet 2010, 120(4):785-796.
  • [25]Jansky SH, Simon R, Spooner DM: A test of taxonomic predictivity: Resistance to white mold in wild relatives of cultivated potato. Crop Sci 2006, 46(6):2561-2570.
  • [26]Lokossou AA, Rietman H, Wang M, Krenek P, van der Schoot H, Henken B, Hoekstra R, Vleeshouwers VGAA, van der Vossen EAG, Visser RGF, et al.: Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Mol Plant Microbe Interact 2010, 23(9):1206-1216.
  • [27]Muigai SG, Bassett MJ, Schuster DJ, Scott JW: Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 2003, 31(1):27-38.
  • [28]Leckie B, Jong D, Mutschler M: Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol Breeding 2012, 30(4):1621-1634.
  • [29]Schilmiller AL, Charbonneau AL, Last RL: Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci U S A 2012, 109(40):16377-16382.
  • [30]Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR: Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 2012, 13(12):17077-17103.
  • [31]Kimura S, Koenig D, Kang J, Yoong FY, Sinha N: Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 2008, 18(9):672-677.
  • [32]Nakazato T, Franklin RA, Kirk BC, Housworth EA: Population structure, demographic history, and evolutionary patterns of a green-fruited tomato, Solanum peruvianum (Solanaceae), revealed by spatial genetics analyses. Am J Bot 2012, 99(7):1207-1216.
  • [33]Nakazato T, Housworth EA: Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history. Am J Bot 2011, 98(1):88-98.
  • [34]Nakazato T, Warren DL, Moyle LC: Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot 2010, 97(4):680-693.
  • [35]Caicedo AL, Schaal BA: Heterogeneous evolutionary process affect R gene diversity in natural populations of Solanum pimpinellifolium. Proc Natl Acad Sci U S A 2004, 101(50):17444-17449.
  • [36]Zuriaga E, Blanca J, Nuez F: Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 2009, 56(5):663-678.
  • [37]Strauss SY, Rudgers JA, Lau JA, Irwin RE: Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 2002, 17(6):278-285.
  • [38]Flanders K, Radcliffe E, Hawkes J: Geographic distribution of insect resistance in potatoes. Euphytica 1997, 93(2):201-221.
  • [39]Nonomura T, Xu L, Wada M, Kawamura S, Miyajima T, Nishitomi A, Kakutani K, Takikawa Y, Matsuda Y, Toyoda H: Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress leaf-surface germination of Oidium neolycopersici conidia. Plant Sci 2009, 176(1):31-37.
  • [40]Wilson MR, Peck SB, Causton C: CDF Checklist of Galapagos true bugs - leafhoppers, planthoppers, aphids and scale insects. In Charles Darwin Foundation Galapagos Species Checklist. Edited by Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F. Puerto Ayora, Galapagos: Charles Darwin Foundation/Fundación Charles Darwin; 2013.
  • [41]Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen JP: Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 2012, 338(6103):113-116.
  • [42]Hare JD: How insect herbivores drive the evolution of plants. Science 2012, 338(6103):50-51.
  • [43]Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA: Natural enemies drive geographic variation in plant defenses. Science 2012, 338(6103):116-119.
  • [44]Hijmans RJ, Guarino L, Mathur P: DIVA-GIS a geographic information system for the analysis of biodiversity data. Manual. Version 7.5. Lima, Peru: International Potato Center; 2012.
  • [45]Bas N, Mollema C, Lindhout P: Resistance in Lycopersicon hirsutum f. glabratum to the greenhouse whitefly (Trialeurodes vaporariorum) increases with plant age. Euphytica 1992, 64(3):189-195.
  • [46]Zar JH: Biostatistical analysis. Upper Saddle River, NJ: Pearson Education International; 2010.
  • [47]Channarayappa C, Shivashankar G, Muniyappa V, Frist RH: Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can J Bot 1992, 70(11):2184-2192.
  • [48]Fulton T, Chunwongse J, Tanksley S: Microprep protocol for extraction of DNA from tomato and other herbaceous plants. 1995, 13(3):207-209.
  • [49]Hammer O, Harper DAT, Ryan PD: PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 2001, 4(1):1-9.
  • [50]Jensen J, Bohonak A, Kelley S: Isolation by distance, web service. BMC Genetics 2005, 6(1):13.
  • [51]De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD: Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols 2007, 2(4):778-791.
  • [52]Firdaus S, Heusden A, Hidayati N, Darmo E, Supena EDJ, Mumm R, De Vos RCH, Visser RG, Vosman B: Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 2013, 126:1487-1501.
  • [53]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 2005, 25(15):1965-1978.
  文献评价指标  
  下载次数:25次 浏览次数:7次