期刊论文详细信息
BMC Systems Biology
A systems approach identifies co-signaling molecules of early growth response 1 transcription factor in immobilization stress
Esther L Sabban4  Athanasios G Papavassiliou2  Xiaoping Liu3  Andrej Tillinger4  Nikolaos A Papanikolaou1 
[1] Laboratory of Biological Chemistry, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Hellas (Greece);Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, Athens, 11527, Hellas (Greece);Current Address: Clyde and Helen Wu Center of Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York 10032, NY, USA;Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, NY, USA
关键词: Stress;    Networks;    Prlh1;    Stat3;    Egr1;    Adrenal medulla;   
Others  :  1127080
DOI  :  10.1186/s12918-014-0100-8
 received in 2013-05-22, accepted in 2014-08-13,  发布年份 2014
PDF
【 摘 要 】

Background

Adaptation to stress is critical for survival. The adrenal medulla, the major source of epinephrine, plays an important role in the development of the hyperadenergic state and increased risk for stress associated disorders, such as hypertension and myocardial infarction. The transcription factor Egr1 plays a central role in acute and repeated stress, however the complexity of the response suggests that other transcription factor pathways might be playing equally important roles during acute and repeated stress. Therefore, we sought to discover such factors by applying a systems approach.

Results

Using microarrays and network analysis we show here for the first time that the transcription factor signal transducer and activator of transcription 3 (Stat3) gene is activated in acute stress whereas the prolactin releasing hormone (Prlh11) and chromogranin B (Chgb) genes are induced in repeated immobilization stress and that along with Egr1 may be critical mediators of the stress response.

Conclusions

Our results suggest possible involvement of Stat3 and Prlh1/Chgb up-regulation in the transition from short to repeated stress activation.

【 授权许可】

   
2014 Papanikolaou et al.; licensee BioMed Central

【 预 览 】
附件列表
Files Size Format View
20150219044529662.pdf 1839KB PDF download
Figure 4. 20KB Image download
Figure 3. 72KB Image download
Figure 2. 90KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kvetnansky R, Sabban EL, Palkovits M: Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009, 89:535-606.
  • [2]McMahon A, Kvetnanský R, Fukuhara K, Weise VK, Kopin IJ, Sabban EL: Regulation of tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels in rat adrenals by a single and repeated immobilization stress. J Neurochem 1992, 58(6):2124-2130.
  • [3]Viskupic E, Kvetnansky R, Sabban EL, Fukuhara K, Weise VK, Kopin IJ, Schwartz JP: Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis. J Neurochem 1994, 63(3):808-814.
  • [4]Wong DL, Her S, Tai TC, Bell RA, Rusnák M, Farkas R, Kvetňanský R, Shih JC: Stress-Induced Expression of Phenylethanolamine N-Methytransferase: Normal and Knock out Animals. In Stress: Neural, Endocrine and Molecular Studies. Edited by McCarty R, Aguilera G, Sabban EL, Kvetnansky R. Taylor and Francis, London; 2002:129-135.
  • [5]Sabban EL, Kvetnansky R: Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 2001, 24(2):91-98.
  • [6]Liu X, Serova L, Kvetnanský R, Sabban EL: Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann N Y Acad Sci 2008, 1148:1-28.
  • [7]O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM: The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 1999, 22(4):167-173.
  • [8]Gashler A, Sukhatme VP: Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 1995, 50:191-224.
  • [9]Christy B, Nathans D: DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A 1989, 86(22):8737-8741.
  • [10]Thiel G, Cibelli G: Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002, 193(3):287-292.
  • [11]Silverman ES, Collins T: Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 1999, 154(3):665-670.
  • [12]Knapska E, Kaczmarek L: A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2004, 74(4):183-211.
  • [13]Bozon B, Davis S, Laroche S: Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus 2002, 12(5):570-577.
  • [14]Tarcic G, Avraham R, Pines G, Amit I, Shay T, Lu Y, Zwang Y, Katz M, Ben-Chetrit N, Jacob-Hirsch J, Virgilio L, Rechavi G, Mavrothalassitis G, Mills GB, Domany E, Yarden Y: EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J 2012, 26(4):1582-1592.
  • [15]Zwang Y, Oren M, Yarden Y: Consistency test of the cell cycle: roles for p53 and EGR1. Cancer Res 2012, 72(5):1051-1054.
  • [16]Baron V, Adamson ED, Calogero A, Ragona G, Mercola D: The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther 2006, 13(2):115-124.
  • [17]Cubero FJ, Nieto N: Arachidonic acid stimulates TNFalpha production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012, 303(2):G228-G239.
  • [18]Waki N, Yamane M, Yamamoto S, Okazaki M, Sugimoto S, Matsukawa A, Oto T, Miyoshi S: Egr1: a novel target for ameliorating acute allograft rejection in an experimental lung transplant model. Eur J Cardiothorac Surg 2012, 41(3):669-675.
  • [19]Yu X, Shen N, Zhang ML, Pan FY, Wang C, Jia WP, Liu C, Gao Q, Gao X, Xue B, Li CJ: Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J 2011, 30(18):3754-3765.
  • [20]Papanikolaou NA, Sabban EL: Ability of Egr1 to activate tyrosine hydroxylase transcription in PC12 cells. Cross-talk with AP-1 factors. J Biol Chem 2000, 275(35):26683-26689.
  • [21]Nakashima A, Ota A, Sabban EL: Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. Brain Res Mol Brain Res 2003, 112(1–2):61-69.
  • [22]Ebert SN, Balt SL, Hunter JP, Gashler A, Sukhatme V, Wong DL: Egr-1 activation of rat adrenal phenylethanolamine N-methyltransferase gene. J Biol Chem 1994, 269(33):20885-20898.
  • [23]Morita K, Ebert SN, Wong DL: Role of transcription factor Egr-1 in phorbol ester-induced phenylethanolamine N-methyltransferase gene expression. J Biol Chem 1995, 270(19):11161-11167.
  • [24]Tai TC, Morita K, Wong DL: Role of Egr-1 in cAMP-dependent protein kinase regulation of the phenylethanolamine N-methyltransferase gene. J Neurochem 2001, 76(6):1851-1859.
  • [25]Papanikolaou NA, Sabban EL: Sp1/Egr1 motif: a new candidate in the regulation of rat tyrosine hydroxylase gene transcription by immobilization stress. J Neurochem 1999, 73(1):433-436.
  • [26]Liu X, Kvetnansky R, Serova L, Sollas A, Sabban EL: Increased susceptibility to transcriptional changes with novel stressor in adrenal medulla of rats exposed to prolonged cold stress. Brain Res Mol Brain Res 2005, 141(1):19-29.
  • [27]Lin WF, Chen CJ, Chang YJ, Chen SL, Chiu IM, Chen L: SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal 2009, 21(7):1060-1072.
  • [28]Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K: Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997, 278(5344):1803-1805.
  • [29]Husby J, Todd AK, Haider SM, Zinzalla G, Thurston DE, Neidle S: Molecular dynamics studies of the STAT3 homodimer: DNA complex: relationships between STAT3 mutations and protein-DNA recognition. J Chem Inf Model 2012, 52(5):1179-1192.
  • [30]Sabban EL, Nankova BB, Serova LI, Kvetnansky R, Liu X: Molecular regulation of gene expression of catecholamine biosynthetic enzymes by stress: sympathetic ganglia versus adrenal medulla. Ann N Y Acad Sci 2004, 1018:370-377.
  • [31]Nankova B, Devlin D, Kvetnanský R, Kopin IJ, Sabban EL: Repeated immobilization stress increases the binding of c-Fos-like proteins to a rat dopamine beta-hydroxylase promoter enhancer sequence. J Neurochem 1993, 61(2):776-779.
  • [32]Nankova BB, Rivkin M, Kelz M, Nestler EJ, Sabban EL: Fos-related antigen 2: potential mediator of the transcriptional activation in rat adrenal medulla evoked by repeated immobilization stress. J Neurosci 2000, 20(15):5647-5653.
  • [33]Sabban EL, Liu X, Serova L, Gueorguiev V, Kvetnansky R: Stress triggered changes in gene expression in adrenal medulla: transcriptional responses to acute and chronic stress. Cell Mol Neurobiol 2006, 26(4–6):845-854.
  • [34]Kvetnansky R, Kubovcakova L, Tillinger A, Micutkova L, Krizanova O, Sabban EL: Gene expression of phenylethanolamine N-methyltransferase in corticotropin-releasing hormone knockout mice during stress exposure. Cell Mol Neurobiol 2006, 26(4–6):733-752.
  • [35]Sabban EL, Tillinger A, Nostramo R, Serova L: Stress triggered changes in expression of genes for neurosecretory granules in adrenal medulla. Cell Mol Neurobiol 2012, 32(5):795-800.
  • [36]Ye L, Wang X, Metzger DS, Riedel E, Montaner LJ, Ho W: Upregulation of SOCS-3 and PIAS-3 impairs IL-12-mediated interferon-gamma response in CD56 T cells in HCV-infected heroin users. PLoS ONE 2010, 5(3):e9602.
  • [37]Greenhalgh CJ, Hilton DJ: Negative regulation of cytokine signaling. J Leukoc Biol 2001, 70(3):348-356.
  • [38]Sun B, Fujiwara K, Adachi S, Inoue K: Physiological roles of prolactin-releasing peptide. Regul Pept 2005, 126(1–2):27-33.
  • [39]Fujiwara K, Matsumoto H, Yada T, Inoue K: Identification of the prolactin-releasing peptide-producing cell in the rat adrenal gland. Regul Pept 2005, 126(1–2):97-102.
  • [40]Natori S, Huttner WB: Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 1996, 93(9):4431-4436.
  • [41]Borges R, Díaz-Vera J, Domínguez N, Arnau MR, Machado JD: Chromogranins as regulators of exocytosis. J Neurochem 2010, 114(2):335-343.
  • [42]Kvetnansky R, Mikulaj L: Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 1970, 87(4):738-743.
  • [43]Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34(3):267-273.
  • [44]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550.
  文献评价指标  
  下载次数:111次 浏览次数:39次