期刊论文详细信息
BMC Molecular Biology
Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases
Philippe Duchateau1  Fayza Daboussi1  Aymeric Duclert1  George H Silva1  Fabian Bietz1  Jérome Mikolajczak1  Mikhail Zaslavskiy1  Gwendoline Dubois1  Séverine Thomas1  Julien Valton1  Marine Beurdeley1  Alexandre Juillerat1 
[1] CELLECTIS S.A, 8 Rue de la Croix Jarry, Paris 75013, France
关键词: Genome editing;    Protein engineering;    TALEN;    TALE;    Transcription activator-like effectors;   
Others  :  1090392
DOI  :  10.1186/1471-2199-15-13
 received in 2014-04-11, accepted in 2014-07-02,  发布年份 2014
PDF
【 摘 要 】

Background

The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases.

Results

In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines.

Conclusion

Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases.

【 授权许可】

   
2014 Juillerat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128160612527.pdf 1338KB PDF download
Figure 3. 85KB Image download
Figure 2. 106KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ: TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 2013, 23(8):390-398.
  • [2]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U: Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326(5959):1509-1512.
  • [3]Moscou MJ, Bogdanove AJ: A simple cipher governs DNA recognition by TAL effectors. Science 2009, 326(5959):1501.
  • [4]Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N: Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012, 335(6069):720-723.
  • [5]Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL: The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012, 335(6069):716-719.
  • [6]Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G: Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr D Biol Crystallogr 2013, 69(Pt 9):1707-1716.
  • [7]Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF: Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186(2):757-761.
  • [8]Sun N, Zhao H: Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 2013, 110(7):1811-1821.
  • [9]Scharenberg AM, Duchateau P, Smith J: Genome engineering with TAL-effector nucleases and alternative modular nuclease technologies. Curr Gene Ther 2013, 13(4):291-303.
  • [10]Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 2011, 29(2):149-153.
  • [11]Mercer AC, Gaj T, Sirk SJ, Lamb BM, Barbas CF: Regulation of Endogenous Human Gene Expression by Ligand-Inducible TALE Transcription Factors. ACS Synth Biol 3rd edition. 2013.
  • [12]Mercer AC, Gaj T, Fuller RP, Barbas CF 3rd: Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 2012, 40(21):11163-11172.
  • [13]Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F: Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 2012, 3:968.
  • [14]Yanik M, Alzubi J, Lahaye T, Cathomen T, Pingoud A, Wende W: TALE-PvuII fusion proteins - novel tools for gene targeting. PLoS One 2013, 8(12):e82539.
  • [15]Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Ser JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK: Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013, 31(12):1137-1142.
  • [16]Miyanari Y, Ziegler-Birling C, Torres-Padilla ME: Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 2013, 20(11):1321-1324.
  • [17]Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM: megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 2014, 42(4):2591-2601.
  • [18]Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE: Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 2013, 31(12):1133-1136.
  • [19]Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S: Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 2013, 41(19):9197-9207.
  • [20]Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F: Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013, 500(7463):472-476.
  • [21]Sun N, Zhao H: A single-chain TALEN architecture for genome engineering. Mol Biosyst 2014, 10(3):446-453.
  • [22]Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, Zhang F, Voytas DF, Duchateau P, Silva GH: Compact designer TALENs for efficient genome engineering. Nat Commun 2013, 4:1762.
  • [23]Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B: TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 2010, 39(1):359-372.
  • [24]Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, Roll S, Prieto J, Blanco FJ, Bravo J, Montoya G, Serrano L, Duchateau P, Paques F: Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 2006, 355(3):443-458.
  • [25]Daboussi F, Zaslavskiy M, Poirot L, Loperfido M, Gouble A, Guyot V, Leduc S, Galetto R, Grizot S, Oficjalska D, Perez C, Delacote F, Dupuy A, Chion-Sotinel I, Le Clerre D, Lebuhotel C, Danos O, Lemaire F, Oussedik K, Cedrone F, Epinat JC, Smith J, Yanez-Munoz RJ, Dickson G, Popplewell L, Koo T, VenDriessche T, Chuah MK, Duclert A, Duchateau P, Paques F: Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic Acids Res 2012, 40(13):6367-6379.
  • [26]Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Marechal A, Langevin S, Benomari N, Bertonati C, Silva GH, Daboussi F, Epinat JC, Montoya G, Duclert A, Duchateau P: Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 2014, 42(8):5390-5402.
  • [27]Gurlebeck D, Szurek B, Bonas U: Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. Plant J 2005, 42(2):175-187.
  • [28]Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim JS: A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 2013, 31(3):251-258.
  • [29]Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK: FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012, 30(5):460-465.
  • [30]Chen S, Oikonomou G, Chiu CN, Niles BJ, Liu J, Lee DA, Antoshechkin I, Prober DA: A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 2013, 41(4):2769-2778.
  • [31]Tsuji S, Futaki S, Imanishi M: Creating a TALE protein with unbiased 5'-T binding. Biochem Biophys Res Commun 2013, 441(1):262-265.
  • [32]Lamb BM, Mercer AC, Barbas CF 3rd: Directed evolution of the TALE N-terminal domain for recognition of all 5' bases. Nucleic Acids Res 2013, 41(21):9779-9785.
  • [33]Juillerat A, Bertonati C, Dubois G, Guyot V, Thomas S, Valton J, Beurdeley M, Silva GH, Daboussi F, Duchateau P: BurrH: a new modular DNA binding protein for genome engineering. Sci Rep 2014, 4:3831.
  • [34]Mirkin SM: Expandable DNA repeats and human disease. Nature 2007, 447(7147):932-940.
  • [35]Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y: Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep 2012, 2(4):707-713.
  • [36]Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, Melliand K, Juillerat A, Duchateau P: Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 2012, 287(46):38427-38432.
  文献评价指标  
  下载次数:19次 浏览次数:24次