期刊论文详细信息
BMC Systems Biology
Sensitivity analysis of biological Boolean networks using information fusion based on nonadditive set functions
Mihaela T Matache3  Zhenyuan Wang3  Jim A Rogers3  Laura Allen3  Tomáš Helikar1  Naomi Kochi2 
[1] Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68588, USA;Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha NE 68198, USA;Department of Mathematics, University of Nebraska at Omaha, Omaha NE 68182, USA
关键词: Sensitivity;    Choquet integral;    Nonadditive set functions;    Signal transduction;    Node attributes;    Information fusion;   
Others  :  1127081
DOI  :  10.1186/s12918-014-0092-4
 received in 2013-10-09, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

An algebraic method for information fusion based on nonadditive set functions is used to assess the joint contribution of Boolean network attributes to the sensitivity of the network to individual node mutations. The node attributes or characteristics under consideration are: in-degree, out-degree, minimum and average path lengths, bias, average sensitivity of Boolean functions, and canalizing degrees. The impact of node mutations is assessed using as target measure the average Hamming distance between a non-mutated/wild-type network and a mutated network.

Results

We find that for a biochemical signal transduction network consisting of several main signaling pathways whose nodes represent signaling molecules (mainly proteins), the algebraic method provides a robust classification of attribute contributions. This method indicates that for the biochemical network, the most significant impact is generated mainly by the combined effects of two attributes: out-degree, and average sensitivity of nodes.

Conclusions

The results support the idea that both topological and dynamical properties of the nodes need to be under consideration. The algebraic method is robust against the choice of initial conditions and partition of data sets in training and testing sets for estimation of the nonadditive set functions of the information fusion procedure.

【 授权许可】

   
2014 Kochi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150219044750802.pdf 1838KB PDF download
Figure 5. 44KB Image download
Figure 4. 40KB Image download
Figure 3. 60KB Image download
Figure 2. 45KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004, 350(21):2129-39.
  • [2]Martelli AM, Tazzari PL, Evangelisisti C, Chiarini F, Blalock WL, Billi AM, Manzoli L, McCubrey JA, Cocco L: Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007, 14(19):2009-23.
  • [3]Pulakat L, Demarco VG, Whaley-Connell A, Sowers JR: The impact of overnutrition on insulin metablic signaling in teh heart and the kidney. Cardiorenal Med 2011, 1(2):102-12.
  • [4]Wheeler-Jones CP: Cell signaling in the cardiovascular system: an overview. Heart 2005, 91(10):1366-74.
  • [5]Kestler HA, Wawra C, Kracher B, Kuhl M: Network modeling of signal transduction: establishing the global view. Bioessays 2008, 30(11-12):1110-25.
  • [6]Jordan JD, Landau EM, Iyengar R: Signaling networks: the origins of cellular multitasking. Cell 2000, 103(2):193-200.
  • [7]Helikar T, Konvalina J, Heidel J, Rogers JA: Emergent decision-making in biological signal transduction networks. PNAS 2008, 105(6):1913-18.
  • [8]Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A: Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol2010, 6:e1000702.
  • [9]Helikar T, Kochi N, Kowal B, Dimri M, Naramura M, Raja SM, Band V, Band H, Rogers JA: A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. PLoS One2013, 8:e61757.
  • [10]Naldi A, Carneiro J, Chaouiya C, Thieffry D: Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput Biol2010, 6:e1000912.
  • [11]Rodriguez A, Sosa D, Torres L, Molina B, Frias S, Mendoza L: A Boolean network model of the FA/BRCA pathway. Bioinformatics 2012, 28(6):858-866.
  • [12]Saadatpour A, Wang R-S, Liao A, Liu X, Loughran TP, Albert I, Albert R: Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput Biol2011, 7:e1002267.
  • [13]Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Klamt S: The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol2009, 5:e1000438.
  • [14]Sridharan S, Layek R, Datta A, Venkatraj J: Boolean modeling and fault diagnosis in oxidative stress response. BMC Genomics2012, 13(Suppl 6):S4.
  • [15]Tokar T, Turcan Z, Ulicny J: Boolean network-based model of the Bcl-2 family mediated MOMP regulation. Theor Biol Med Modell2013, 10:40.
  • [16]Kauffman SA: The origins of order. Oxford University Press, New York; 1993:.
  • [17]Klemm K, Bornholdt S: Stable and unstable attractors in Boolean networks. Phys Rev E2000, 72:055101.
  • [18]Raeymaekers L: Dynamics of Boolean networks controlled by biologically meaningful functions. J Theor Biol 2002, 218:331-41.
  • [19]Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2001, 18(2):261-274.
  • [20]Shmulevich I, Dougherty ER, Zhang W: Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 2002, 18(10):1319-1331.
  • [21]Shmulevich I, Lähdesmäki H, Dougherty ER, Astola J, Zhang W: The role of certain Post classes in Boolean network models of genetic networks. PNAS 2003, 100(19):10734-10739.
  • [22]Huepe C, Aldana-González M: Dynamical phase transition in a neural network model with noise: an exact solution. J Stat Phys 2002, 108(3-4):527-40.
  • [23]Derrida B, Pomeau Y: Random neworks of automata: a simple annealed approximation. Europhys Lett 1986, 1(2):45-6.
  • [24]Kauffman S, Peterson C, Samuelsson B, Troein C: Genetic networks with canalyzing Boolean rules are always stable. PNAS 2004, 101(49):17102-7.
  • [25]Amaral LAN, Diaz-Guilera A, Moreira AA, Goldberger AL, Lipsitz LA: Emergence of complex dynamics in a simple model of signaling networks. PNAS 2004, 101(44):15551-15555.
  • [26]Shmulevich I, Kauffman SA: Activities and sensitivities in Boolean network models. Phys Rev Lett2004, 93(4):048701.
  • [27]Kochi N, Wang Z: An algebraic method and a genetic algorithm to the identification of fuzzy measures based on Choquet integrals. J Intell Fuzzy Syst: Appl Eng Technol 2014, 26(13):1393-1400.
  • [28]Murofushi T, Sugeno M: An interpretation of fuzzy measure and the Choquet integralas an integral with respect to a fuzzy measure. Fuzzy Sets Syst 1989, 29:201-27.
  • [29]Murofushi T, Sugeno M, Machida M: Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst 1994, 64:73-86.
  • [30]Wang Z, Klir GJ: Fuzzy Measure Theory. Plenum, New York; 1992.
  • [31]Wang Z, Yang R, Leung KS: Nonlinear Integrals and Their Applications in Data Mining. World Scientific, Singapore; 2010.
  • [32]Kochi N, Matache MT: Mean-field boolean network model of a signal transduction network. Biosystems 2012, 108:14-27.
  • [33]Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Wicks B, Shrestha M, Limbu K, Rogers JA: The cell collective: toward an open and collaborative approach to systems biology. BMC Syst Biol2012, 6:96.
  • [34]Helikar T, Kowal B, Rogers JA: A cell simulator platform: the cell collective. Clin Pharmacol Ther 2013, 93:393-5.
  • [35]Matache MT, Matache V: On the sensitivity to noise of a boolean function. J Math Phys2009, 50:103512.
  • [36]Guénolé A, Srivas R, Vreeken K, Wang ZZ, Wang S, Krogan NJ, Ideker T: Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol Cell 2013, 49:346-58.
  • [37]Sahin O, Fröhlich H, Löbke C, Korf U, Burmester S, Majety M, Mattern J, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol2009, 3:1. doi:10.1186/1752-0509-3-1.
  • [38]Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, Saez-Rodriguez J: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS one2013, 8(4):e61318.
  • [39]Jansen K, Matache MT: Phase transition of Boolean networks with partially nested canalizing functions. Eur Phys J B2013, 86:316.
  • [40]Peixoto TP: The phase diagram of random Boolean networks with nested canalizing functions. Eur Phys J B 2010, 78(2):187-192.
  文献评价指标  
  下载次数:43次 浏览次数:27次