期刊论文详细信息
BMC Genomics
Comparative genome sequencing reveals chemotype-specific gene clusters in the toxigenic black mold Stachybotrys
Nick V Grishin2  Zbyszek Otwinowski1  Dominika Borek1  Jeremy Semeiks3 
[1]Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
[2]Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
[3]Molecular Biophysics Program and Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
关键词: Whole-genome sequencing;    Atranones;    Satratoxins;    Toxins;    Trichothecene biosynthesis;    Secondary metabolism;    Comparative genomics;    Stachybotrys;   
Others  :  1216490
DOI  :  10.1186/1471-2164-15-590
 received in 2013-01-18, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

The fungal genus Stachybotrys produces several diverse toxins that affect human health. Its strains comprise two mutually-exclusive toxin chemotypes, one producing satratoxins, which are a subclass of trichothecenes, and the other producing the less-toxic atranones. To determine the genetic basis for chemotype-specific differences in toxin production, the genomes of four Stachybotrys strains were sequenced and assembled de novo. Two of these strains produce atranones and two produce satratoxins.

Results

Comparative analysis of these four 35-Mbp genomes revealed several chemotype-specific gene clusters that are predicted to make secondary metabolites. The largest, which was named the core atranone cluster, encodes 14 proteins that may suffice to produce all observed atranone compounds via reactions that include an unusual Baeyer-Villiger oxidation. Satratoxins are suggested to be made by products of multiple gene clusters that encode 21 proteins in all, including polyketide synthases, acetyltransferases, and other enzymes expected to modify the trichothecene skeleton. One such satratoxin chemotype-specific cluster is adjacent to the core trichothecene cluster, which has diverged from those of other trichothecene producers to contain a unique polyketide synthase.

Conclusions

The results suggest that chemotype-specific gene clusters are likely the genetic basis for the mutually-exclusive toxin chemotypes of Stachybotrys. A unified biochemical model for Stachybotrys toxin production is presented. Overall, the four genomes described here will be useful for ongoing studies of this mold’s diverse toxicity mechanisms.

【 授权许可】

   
2014 Semeiks et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630212731466.pdf 586KB PDF download
Figure 7. 66KB Image download
Figure 6. 60KB Image download
Figure 5. 23KB Image download
Figure 4. 79KB Image download
Figure 3. 60KB Image download
Figure 2. 26KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Jarvis BB: Stachybotrys chartarum: a fungus for our time. Phytochemistry 2003, 64:53-60.
  • [2]Li S, Hartman GL, Jarvis BB, Tak H: A Stachybotrys chartarum isolate from soybean. Mycopathologia 2002, 154:41-49.
  • [3]Kuhn DM, Ghannoum MA: Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 2003, 16:144-172.
  • [4]Jarvis BB, Sorenson WG, Hintikka EL, Nikulin M, Zhou Y, Jiang J, Wang S, Hinkley S, Etzel RA, Dearborn D: Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Appl Environ Microbiol 1998, 64:3620-3625.
  • [5]Minagawa K, Kouzuki S, Kamigauchi T: Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. II. Synthesis and preliminary structure-activity relationships of stachyflin derivatives. J. Antibiot 2002, 55:165-171.
  • [6]Sakamoto K, Tsujii E, Miyauchi M, Nakanishi T, Yamashita M, Shigematsu N, Tada T, Izumi S, Okuhara M: FR901459, a novel immunosuppressant isolated from Stachybotrys chartarum No. 19392. Taxonomy of the producing organism, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot 1993, 46:1788-1798.
  • [7]Yike I, Rand T, Dearborn DG: The role of fungal proteinases in pathophysiology of Stachybotrys chartarum. Mycopathologia 2007, 164:171-181.
  • [8]Shi C, Smith ML, Miller JD: Characterization of human antigenic proteins SchS21 and SchS34 from Stachybotrys chartarum. Int Arch Allergy Immunol 2011, 155:74-85.
  • [9]Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR: Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 2008, 104:4-26.
  • [10]Andersen B, Nielsen KF, Jarvis BB: Characterization of Stachybotrys from water-damaged buildings based on morphology, growth and metabolite production. Mycologia 2002, 94:392-403.
  • [11]Hinkley SF, Mazzola EP, Fettinger JC, Lam Y-F, Jarvis BB: Atranones A-G, from the toxigenic mold Stachybotrys chartarum. Phytochemistry 2000, 55:663-673.
  • [12]Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S: Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 2011, 77:4867.
  • [13]Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M: Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotech Biochem 2007, 71:2105-2123.
  • [14]Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ: The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Progress 2008, 7:177-219.
  • [15]Andersen B, Nielsen KF, Thrane U, Szaro T, Taylor JW, Jarvis BB: Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia 2003, 95:1227-1238.
  • [16]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20:265-272.
  • [17]Holt C, Yandell M: MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 2011, 12:491.
  • [18]Wu Z, Tsumura Y, Blomquist G, Wang X-R: 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolates. Appl Environ Microbiol 2003, 69:5389-5397.
  • [19]Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, et al.: Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464:367-373.
  • [20]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19:1117-1123.
  • [21]Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23:1061-1067.
  • [22]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13:2178-2189.
  • [23]Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR: The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 2012, 40:D653-D659.
  • [24]Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S, Botstein D: SGD: Saccharomyces Genome Database. Nucleic Acids Res 1998, 26:73-79.
  • [25]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.
  • [26]Cox RJ: Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 2007, 5:2010-2026.
  • [27]Keller NP, Turner G, Bennett JW: Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 2005, 3:937-947.
  • [28]Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T: antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 2013, 41:W204-W212.
  • [29]Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD: Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 2004, 41:454-462.
  • [30]McCormick SP, Stanley AM, Stover NA, Alexander NJ: Trichothecenes: from simple to complex mycotoxins. Toxins (Basel) 2011, 3:802-814.
  • [31]Dixon DP, Skipsey M, Edwards R: Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 2010, 71:338-350.
  • [32]Angiuoli SV, Salzberg SL: Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 2011, 27:334-342.
  • [33]Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB: Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett 2002, 518:43-47.
  • [34]Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, et al.: Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 2013, 9:e1003323.
  • [35]Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM, Brakhage AA: Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 2008, 70:445-461.
  • [36]McCormick SP, Alexander NJ: Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol 2002, 68:2959-2964.
  • [37]Spiering MJ, Moon CD, Wilkinson HH, Schardl CL: Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 2005, 169:1403-1414.
  • [38]Alexander NJ, McCormick SP, Hohn TM: TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 1999, 261:977-984.
  • [39]Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA: Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 1994, 60:2408-2414.
  • [40]Abe Y, Ono C, Hosobuchi M, Yoshikawa H: Functional analysis of mlcR, a regulatory gene for ML-236B (compactin) biosynthesis in Penicillium citrinum. Mol Genet Genomics 2002, 268:352-361.
  • [41]Cruse M, Telerant R, Gallagher T, Lee T, Taylor JW: Cryptic species in Stachybotrys chartarum. Mycologia 2002, 94:814-822.
  • [42]Massingham T, Goldman N: All Your Base: a fast and accurate probabilistic approach to base calling. Genome Biol 2012, 13:R13.
  • [43]Kelley DR, Schatz MC, Salzberg SL: Quake: quality-aware detection and correction of sequencing errors. Genome Biol 2010, 11:R116.
  • [44]Wong P, Walter M, Lee W, Mannhaupt G, Münsterkötter M, Mewes H-W, Adam G, Güldener U: FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucl Acids Res 2011, 39:D637-D639.
  • [45]Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND: SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 2010, 47:736-741.
  • [46]Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, et al.: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011, 12:R40. Figures
  文献评价指标  
  下载次数:66次 浏览次数:33次