期刊论文详细信息
BMC Research Notes
Innovative tools and OpenHDS for health and demographic surveillance on Rusinga Island, Kenya
Nicolas Maire3  Willem Takken4  Wolfgang R. Mukabana2  Collins Mweresa1  Alexandra Hiscox4  Kelvin Onoka1  Ibrahim Kiche1  Aurelio Di Pasquale3  Tobias Homan4 
[1] Department of Medical Entomology, International Centre of Insect Physiology and Ecology, Nairobi, Kenya;School of Biological Sciences, University of Nairobi, Nairobi, Kenya;University of Basel, Basel, Switzerland;Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
关键词: Kenya;    Malaria;    Data management platform;    Mobile data collection;    Health and demographic surveillance system;   
Others  :  1230420
DOI  :  10.1186/s13104-015-1373-8
 received in 2015-03-18, accepted in 2015-08-24,  发布年份 2015
PDF
【 摘 要 】

Background

Health in low and middle income countries is on one hand characterized by a high burden associated with preventable communicable diseases and on the other hand considered to be under-documented due to improper basic health and demographic record-keeping. health and demographic surveillance systems (HDSSs) have provided researchers, policy makers and governments with data about local population dynamics and health related information. In order for an HDSS to deliver high quality data, effective organization of data collection and management are vital. HDSSs impose a challenging logistical process typically characterized by door to door visits, poor navigational guidance, conducting interviews recorded on paper, error prone data entry, an extensive staff and marginal data quality management possibilities.

Methods

A large trial investigating the effect of odour-baited mosquito traps on malaria vector populations and malaria transmission on Rusinga Island, western Kenya, has deployed an HDSS. By means of computer tablets in combination with Open Data Kit and OpenHDS data collection and management software experiences with time efficiency, cost effectiveness and high data quality are illustrate. Step by step, a complete organization of the data management infrastructure is described, ranging from routine work in the field to the organization of the centralized data server.

Results and discussion

Adopting innovative technological advancements has enabled the collection of demographic and malaria data quickly and effectively, with minimal margin for errors. Real-time data quality controls integrated within the system can lead to financial savings and a time efficient work flow.

Conclusion

This novel method of HDSS implementation demonstrates the feasibility of integrating electronic tools in large-scale health interventions.

【 授权许可】

   
2015 Homan et al.

【 预 览 】
附件列表
Files Size Format View
20151106055838518.pdf 1322KB PDF download
Fig.4. 56KB Image download
Fig.3. 22KB Image download
Fig.2. 65KB Image download
Fig.1. 45KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

【 参考文献 】
  • [1]Kesler LM II: The community as an epidemiologic laboratory: a case-book in community studies. Johns Hopkins Press, Baltimore; 1970.
  • [2]Das Gupta M, Aaby P, Garenne M, Pison G. Prospective community studies in developing countries. Oxford: Clarendon press; 1997
  • [3]INDEPTH Network. Population and health in developing countries. Ottawa: International Development Research Centre. 2002;Vol 1. Population, health, and survival at INDEPTH sites.
  • [4]Molineaux L, Gramiccia G: The Garki project: research on the epidemiology and control of malaria in the Sudan savanna of West Africa. World Health Organization Pulication, Geneva; 1980.
  • [5]Sankoh O, Ijsselmuiden C, et al.: Sharing research data to improve public health: a perspective from the global south. Lancet 2011, 378(9789):401-402.
  • [6]Sankoh O, Byass P: The INDEPTH Network: filling vital gaps in global epidemiology. Int J Epidemiol 2012, 41(3):579-588.
  • [7]Scott JAG, Bauni E, Moisi JC, Ojal J, Gatakaa H, Nyundo C, et al.: Profile: the Kilifi health and demographic surveillance system (KHDSS). Int J Epidemiol 2012, 41(3):650-657.
  • [8]Kouanda S, Bado A, Yameogo M, Nitiema J, Yameogo G, Bocoum F, et al.: The Kaya HDSS, Burkina Faso: a platform for epidemiological studies and health programme evaluation. Int J Epidemiol 2013, 42(3):741-749.
  • [9]Kahn K, Collinson MA, Gomez-Olive FX, Mokoena O, Twine R, Mee P, et al.: Profile: Agincourt health and socio-demographic surveillance system. Int J Epidemiol 2012, 41(4):988-1001.
  • [10]Gyapong M, Sarpong D, Awini E, Manyeh AK, Tei D, Odonkor G, et al.: Profile: the Dodowa HDSS. Int J Epidemiol 2013, 42(6):1686-1696.
  • [11]Martínez-Pérez B, dlT-D I, López-Coronado MM: Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J Med Internet Res 2013, 10(6):e120.
  • [12]Bloomfield GSVR, Vasudevan L: Mobile health for non-communicable diseases in Sub-Saharan Africa: a systematic review of the literature and strategic framework for research. Global Health. 2014, 10:49. BioMed Central Full Text
  • [13]Asangansi I, Braa K: The emergence of mobile-supported national health information systems in developing countries. Studies in health technology and informatics. 2010, 160(Pt 1):540-544.
  • [14]Schobel J, Schickler M, Pryss R et al. Towards process-driven mobile data collection applications: requirements, challenges, lessons learned. In: 10th Int’l Conference on Web Information Systems and Technologies 2014;10:371–82.
  • [15]Asangansi IMB, Meremikwu M, et al.: Improving the routine HMIS in Nigeria through mobile technology for community data collection. JHIDC. 2013, 7:1.
  • [16]Matavire RMT: Intervention breakdowns as occasions for articulating mobile health information infrastructures. EJISDC 2014, 63(3):1-17.
  • [17]Odhiambo-Otieno GW: Evaluation of existing district health management information systems—a case study of the district health systems in Kenya. Int J Med Inform. 2005, 74(9):733-744.
  • [18]Hiscox A, Maire N, Kiche I et al. The SolarMal Project: innovative mosquito trapping technology for malaria control. Malar J. 2012;11(Suppl 1):O45.
  • [19]Hartung C, Lerer A, Anokwa Y et al. Open data kit: tools to build information services for developing regions. In: Proceedings 4th ACM/IEEE Int’l Conf Information and Communication Technologies and Development. 2010. p. 1–11.
  • [20]Mirth, healthcare integration engines.. www.mirthcorp.com/products/mirth-connect webcite
  • [21]Web-based monitoring system SU2 for data quality control.. https://github.com/SwissTPH/openhds-su2 webcite
  • [22]Derra K, Rouamba E, Kazienga A, Ouedraogo S, Tahita MC, Sorgho H, et al.: Profile: Nanoro health and demographic surveillance system. Int J Epidemiol 2012, 41(5):1293-1301.
  • [23]Pison G, Douillot L, Kante AM, Ndiaye O, Diouf PN, Senghor P, et al.: Health and demographic surveillance system profile: Bandafassi health and demographic surveillance system (Bandafassi HDSS), Senegal. Int J Epidemiol. 2014, 43(3):739-748.
  • [24]Sacoor C, Nhacolo A, Nhalungo D, Aponte JJ, Bassat Q, Augusto O, et al.: Profile: Manhica Health Research Centre (Manhica HDSS). Int J Epidemiol 2013, 42(5):1309-1318.
  • [25]Odhiambo FOLK, Sewe M, et al.: Profile: The KEMRI/CDC health and demographic surveillance system-western Kenya. Int J Epidemiol 2012, 41(4):977-987.
  • [26]Wanyua SNM, Goto K, et al.: Profile: the Mbita health and demographic surveillance system. Int J Epidemiol 2013, 42(6):1678-1685.
  • [27]Sifuna P, Oyugi M, Ogutu B, Andagalu B, Otieno A, Owira V, et al.: Health and demographic surveillance system Profile: the Kombewa health and demographic surveillance system (Kombewa HDSS). Int J Epidemiol 2014, 43(4):1097-1104.
  • [28]Pavluck A, Chu B, Flueckiger RM, Ottesen E: Electronic data capture tools for global health programs: evolution of LINKS, an Android-, web-based system. PLoS Neglect Trop D 2014.
  • [29]Anantraman V, Mikkelsen T, Khilnani R, Kumar VS, Pentland A, Ohno-Machado L. Open source handheld-based EMR for paramedics working in rural areas. In: Proceedings/AMIA Annual Symposium AMIA Symposium. 2002:12–6.
  • [30]DeRenzi B, Borriello G, Jackson J, Kumar VS, Parikh TS, Mph PV, et al.: Mobile phone tools for Field-based health care workers in low-income Countries. Mt Sinai J Med 2011, 78(3):406-418.
  • [31]Phillips JF, Macleod BB, Pence B. The Household Registration System: computer software for the rapid dissemination of demographic surveillance systems. Demographic research. 2000;2:40.
  • [32]Wilcox AB, Gallagher KD, Boden-Albala B, Bakken SR: Research data collection methods from paper to tablet computers. Med Care 2012, 50(7):S68-S73.
  文献评价指标  
  下载次数:42次 浏览次数:15次