期刊论文详细信息
BMC Medical Genomics
Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease
Steve Horvath7  Igor Grant1  Susan Morgello2  Deborah Commins8  Charles H Hinkin6  Elyse J Singer5  Benjamin Gelman4  Paul Shapshak3  Jeremy A Miller7  Andrew J Levine5 
[1] Department of Psychiatry, California NeuroAIDS Tissue Network, University of California, San Diego, USA;Departments of Neurology, Neuroscience, and Pathology, Manhattan HIV Brain Bank, The Mount Sinai School of Medicine, New York, USA;Department of Medicine (Division of Infectious Disease & International Medicine) and Department of Psychiatry & Behavioral Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA;Departments of Pathology and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, USA;Department of Neurology, National Neurological AIDS Bank, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA;VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA;Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA;Department of Pathology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
关键词: Coexpression module;    National neuroAIDS tissue consortium;    CNS penetration effectiveness;    WGCNA;    Weighted gene coexpression network analysis;    HIV-associated neurocognitive disorder;    HIV-associated dementia;    HIV encephalitis;   
Others  :  1121174
DOI  :  10.1186/1755-8794-6-4
 received in 2012-09-04, accepted in 2013-01-30,  发布年份 2013
PDF
【 摘 要 】

Background

Human Immunodeficiency Virus-1 (HIV) infection frequently results in neurocognitive impairment. While the cause remains unclear, recent gene expression studies have identified genes whose transcription is dysregulated in individuals with HIV-association neurocognitive disorder (HAND). However, the methods for interpretation of such data have lagged behind the technical advances allowing the decoding genetic material. Here, we employ systems biology methods novel to the field of NeuroAIDS to further interrogate extant transcriptome data derived from brains of HIV + patients in order to further elucidate the neuropathogenesis of HAND. Additionally, we compare these data to those derived from brains of individuals with Alzheimer’s disease (AD) in order to identify common pathways of neuropathogenesis.

Methods

In Study 1, using data from three brain regions in 6 HIV-seronegative and 15 HIV + cases, we first employed weighted gene co-expression network analysis (WGCNA) to further explore transcriptome networks specific to HAND with HIV-encephalitis (HIVE) and HAND without HIVE. We then used a symptomatic approach, employing standard expression analysis and WGCNA to identify networks associated with neurocognitive impairment (NCI), regardless of HIVE or HAND diagnosis. Finally, we examined the association between the CNS penetration effectiveness (CPE) of antiretroviral regimens and brain transcriptome. In Study 2, we identified common gene networks associated with NCI in both HIV and AD by correlating gene expression with pre-mortem neurocognitive functioning.

Results

Study 1: WGCNA largely corroborated findings from standard differential gene expression analyses, but also identified possible meta-networks composed of multiple gene ontology categories and oligodendrocyte dysfunction. Differential expression analysis identified hub genes highly correlated with NCI, including genes implicated in gliosis, inflammation, and dopaminergic tone. Enrichment analysis identified gene ontology categories that varied across the three brain regions, the most notable being downregulation of genes involved in mitochondrial functioning. Finally, WGCNA identified dysregulated networks associated with NCI, including oligodendrocyte and mitochondrial functioning. Study 2: Common gene networks dysregulated in relation to NCI in AD and HIV included mitochondrial genes, whereas upregulation of various cancer-related genes was found.

Conclusions

While under-powered, this study identified possible biologically-relevant networks correlated with NCI in HIV, and common networks shared with AD, opening new avenues for inquiry in the investigation of HAND neuropathogenesis. These results suggest that further interrogation of existing transcriptome data using systems biology methods can yield important information.

【 授权许可】

   
2013 Levine et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211022256333.pdf 2432KB PDF download
Figure 6. 70KB Image download
Figure 5. 22KB Image download
Figure 4. 57KB Image download
Figure 3. 205KB Image download
Figure 2. 337KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K: Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69(18):1789-1799.
  • [2]Cherner M, Cysique L, Heaton RK, Marcotte TD, Ellis RJ, Masliah E, Grant I: Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J Neurovirol 2007, 13(1):23-28.
  • [3]Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, Moore D, Ellis R, Cherner M, Gelman B: Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol 2009, 15(5–6):360-370.
  • [4]Masliah E, Roberts ES, Langford D, Everall I, Crews L, Adame A, Rockenstein E, Fox HS: Patterns of gene dysregulation in the frontal cortex of patients with HIV encephalitis. J Neuroimmunol 2004, 157(1–2):163-175.
  • [5]Salaria S, Badkoobehi H, Rockenstein E, Crews L, Chana G, Masliah E, Everall IP: Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol 2007, 13(6):496-503.
  • [6]Everall I, Salaria S, Roberts E, Corbeil J, Sasik R, Fox H, Grant I, Masliah E: Methamphetamine stimulates interferon inducible genes in HIV infected brain. J Neuroimmunol 2005, 170(1–2):158-171.
  • [7]Winkler JM, Chaudhuri AD, Fox HS: Translating the brain transcriptome in NeuroAIDS: from Non-human primates to humans. J Neuroimmune Pharmacol 2012.
  • [8]Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, Taffe MA, Fox HS: Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 2003, 162(6):2041-2057.
  • [9]Gersten M, Alirezaei M, Marcondes MC, Flynn C, Ravasi T, Ideker T, Fox HS: An integrated systems analysis implicates EGR1 downregulation in simian immunodeficiency virus encephalitis-induced neural dysfunction. J Neurosci 2009, 29(40):12467-12476.
  • [10]Borjabad A, Brooks AI, Volsky DJ: Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 2010, 5(1):44-62.
  • [11]Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical RS, Starkey JM, Masliah E, Commins DL, Brandt D, Grant I, Singer EJ, Levine AJ, Miller J, Luxon BA, Morgello S: The national NeuroAIDS tissue consortium brain gene array: Two types of HIV-associated neurocognitive impairment. PLoS OneIn Press
  • [12]Gelman BM DJ: HIV-1 neuropathology. In Neurology of AIDS. Third edition. Edited by Gendelman HE, Fox SH, Lipton SA, Everall IP, Grant I, Swindells S. Oxford University Press; 2012:518-535.
  • [13]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 2008, 9:559. BioMed Central Full Text
  • [14]Hu S, Zhou M, Jiang J, Wang J, Elashoff D, Gorr S, Michie SA, Spijkervet FK, Bootsma H, Kallenberg CG: Systems biology analysis of Sjogren’s syndrome and mucosa-associated lymphoid tissue lymphoma in parotid glands. Arthritis Rheum 2009, 60(1):81-92.
  • [15]Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 2006, 103(46):17402-17407.
  • [16]Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH: Functional organization of the transcriptome in human brain. Nat Neurosci 2008, 11(11):1271-1282.
  • [17]Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module preserved and reproducible? PLoS Comput Biol 2011, 7(1):e1001057.
  • [18]Miller JA, Horvath S, Geschwind DH: Divergence of human and mouse brain transcriptome highlights alzheimer disease pathways. Proc Natl Acad Sci U S A 2010, 107(28):12698-12703.
  • [19]Hilliard AT, Miller JE, Fraley ER, Horvath S, White SA: Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron 2012, 73(3):537-552.
  • [20]Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S: Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 2007, 18(6–7):463-472.
  • [21]Mason MJ, Fan G, Plath K, Zhou Q, Horvath S: Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 2009, 10:327. BioMed Central Full Text
  • [22]Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P: A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 2009, 5(9):e1000642.
  • [23]Presson AP, Sobel EM, Papp JC, Suarez CJ, Whistler T, Rajeevan MS, Vernon SD, Horvath S: Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst Biol 2008, 2:95. BioMed Central Full Text
  • [24]Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF, Langfelder P, DeYoung J, Wokke JH, Veldink JH: Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients. BMC Genomics 2009, 10:405. BioMed Central Full Text
  • [25]Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW: Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 2004, 101(7):2173-2178.
  • [26]Shapshak P, Rodriguez HE, Kayathri R, Levine A, Chiappelli F, Minagar A: Alzheimer’s disease and HIV associated dementia related genes: I. location and function. Bioinformation 2008, 2(8):348-357.
  • [27]Minagar A, Shapshak P, Duran EM, Kablinger AS, Alexander JS, Kelley RE, Seth R, Kazic T: HIV-associated dementia, Alzheimer’s disease, multiple sclerosis, and schizophrenia: gene expression review. J Neurol Sci 2004, 224(1–2):3-17.
  • [28]Miller JA, Oldham MC, Geschwind DH: A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J Neurosci 2008, 28(6):1410-1420.
  • [29]Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Morgello S: Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 2008, 65(1):65-70.
  • [30]Morgello S, Gelman BB, Kozlowski PB, Vinters HV, Masliah E, Cornford M, Cavert W, Marra C, Grant I, Singer EJ: The national NeuroAIDS tissue consortium: a new paradigm in brain banking with an emphasis on infectious disease. Neuropathol Appl Neurobiol 2001, 27(4):326-335.
  • [31]Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, Vlassi C, Giulianelli M, Galgani S, Antinori A: Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 2007, 45(2):174-182.
  • [32]Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP, McCutchan JA, Heaton RK, Ellis RJ: Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology 2009, 73(5):342-348.
  • [33]Marra CM, Lockhart D, Zunt JR, Perrin M, Coombs RW, Collier AC: Changes in CSF and plasma HIV-1 RNA and cognition after starting potent antiretroviral therapy. Neurology 2003, 60(8):1388-1390.
  • [34]Lim WK, Wang K, Lefebvre C, Califano A: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 2007, 23(13):i282-288.
  • [35]Oldham MC, Horvath S, Geschwind DH: Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci U S A 2006, 103(47):17973-17978.
  • [36]Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, Horvath S: Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics 2011, 12:322. BioMed Central Full Text
  • [37]Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. Genome Biol 2003, 4(10):R70. BioMed Central Full Text
  • [38]Liu GG, Fong E, Zeng X: GNCPro: navigate human genes and relationships through net-walking. Adv Exp Med Biol 2010, 680:253-259.
  • [39]Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P: Coexpression analysis of human genes across many microarray data sets. Genome Res 2004, 14(6):1085-1094.
  • [40]Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr: Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 2005, 6(4):R33. BioMed Central Full Text
  • [41]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:Article17.
  • [42]Langfelder P, Horvath S: Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 2007, 1:54. BioMed Central Full Text
  • [43]Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH: Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474(7351):380-384.
  • [44]Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ: Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2006, 2(8):e130.
  • [45]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555.
  • [46]Yip AM, Horvath S: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinforma 2007, 8:22. BioMed Central Full Text
  • [47]Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the dynamic tree Cut package for R. Bioinformatics 2008, 24(5):719-720.
  • [48]Horvath S, Dong J: Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 2008, 4(8):e1000117.
  • [49]Folstein MF, Folstein SE, McHugh PR: "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975, 12(3):189-198.
  • [50]Winston A, Duncombe C, Li PC, Gill JM, Kerr SJ, Puls R, Petoumenos K, Taylor-Robinson SD, Emery S, Cooper DA: Does choice of combination antiretroviral therapy (cART) alter changes in cerebral function testing after 48 weeks in treatment-naive, HIV-1-infected individuals commencing cART? A randomized, controlled study. Clin Infect Dis 2010, 50(6):920-929.
  • [51]Zhou L, Sokolskaja E, Jolly C, James W, Cowley SA, Fassati A: Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration. PLoS Pathog 2011, 7(8):e1002194.
  • [52]De Iaco A, Luban J: Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus. Retrovirology 2011, 8:98. BioMed Central Full Text
  • [53]Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28(1):264-278.
  • [54]MacLennan NK, Dong J, Aten JE, Horvath S, Rahib L, Ornelas L, Dipple KM, McCabe ER: Weighted gene co-expression network analysis identifies biomarkers in glycerol kinase deficient mice. Mol Genet Metab 2009, 98(1–2):203-214.
  • [55]Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP: HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011, 17(1):3-16.
  • [56]Aronica E, Vandeputte DA, van Vliet EA, da Silva FH L, Troost D, Gorter JA: Expression of Id proteins increases in astrocytes in the hippocampus of epileptic rats. Neuroreport 2001, 12(11):2461-2465.
  • [57]Tzeng SF, Kahn M, Liva S, De Vellis J: Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury. Glia 1999, 26(2):139-152.
  • [58]Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A: Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 1995, 9(1):15-30.
  • [59]Gendelman HE, Genis P, Jett M, Zhai QH, Nottet HS: An experimental model system for HIV-1-induced brain injury. Adv Neuroimmunol 1994, 4(3):189-193.
  • [60]Pulliam L, Rempel H, Sun B, Abadjian L, Calosing C, Meyerhoff DJ: A peripheral monocyte interferon phenotype in HIV infection correlates with a decrease in magnetic resonance spectroscopy metabolite concentrations. AIDS 2011, 25(14):1721-1726.
  • [61]Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG: Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 2003, 38(2):291-303.
  • [62]Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M: Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 2011, 17(1):26-40.
  • [63]Berger JR, Arendt G: HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol 2000, 14(3):214-221.
  • [64]Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS: Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Neuroimage 2008, 42(2):869-878.
  • [65]di Rocco A, Bottiglieri T, Dorfman D, Werner P, Morrison C, Simpson D: Decreased homovanilic acid in cerebrospinal fluid correlates with impaired neuropsychologic function in HIV-1-infected patients. Clin Neuropharmacol 2000, 23(4):190-194.
  • [66]Gelman BB, Spencer JA, Holzer CE 3rd, Soukup VM: Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 2006, 1(4):410-420.
  • [67]Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M: Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 2009, 15(3):257-274.
  • [68]Gelman BB, Lisinicchia JG, Chen T, Johnson KM, Jennings K, Freeman DH Jr, Soukup VM: Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012, 7(3):686-700.
  • [69]Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO: Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 1998, 95(6):3117-3121.
  • [70]Eugenin EA, Dyer G, Calderon TM, Berman JW: HIV-1 tat protein induces a migratory phenotype in human fetal microglia by a CCL2 (MCP-1)-dependent mechanism: possible role in NeuroAIDS. Glia 2005, 49(4):501-510.
  • [71]Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA: HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 2002, 99(21):13795-13800.
  • [72]Weiss JM, Nath A, Major EO, Berman JW: HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 1999, 163(5):2953-2959.
  • [73]Nguyen TP, Soukup VM, Gelman BB: Persistent hijacking of brain proteasomes in HIV-associated dementia. Am J Pathol 2010, 176(2):893-902.
  • [74]Gelman BB, Nguyen TP: Synaptic proteins linked to HIV-1 infection and immunoproteasome induction: proteomic analysis of human synaptosomes. J Neuroimmune Pharmacol 2010, 5(1):92-102.
  • [75]Newhouse SJ, Wallace C, Dobson R, Mein C, Pembroke J, Farrall M, Clayton D, Brown M, Samani N, Dominiczak A: Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British Genetics of Hypertension study. Hum Mol Genet 2005, 14(13):1805-1814.
  • [76]Ray M, Ruan J, Zhang W: Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases. Genome Biol 2008, 9(10):R148. BioMed Central Full Text
  • [77]Matsunaga E, Tauszig-Delamasure S, Monnier PP, Mueller BK, Strittmatter SM, Mehlen P, Chedotal A: RGM and its receptor neogenin regulate neuronal survival. Nat Cell Biol 2004, 6(8):749-755.
  • [78]Cosenza MA, Zhao ML, Shankar SL, Shafit-Zagardo B, Lee SC: Up-regulation of MAP2e-expressing oligodendrocytes in the white matter of patients with HIV-1 encephalitis. Neuropathol Appl Neurobiol 2002, 28(6):480-488.
  • [79]Lackner P, Kuenz B, Reindl M, Morandell M, Berger T, Schmutzhard E, Eggers C: Antibodies to myelin oligodendrocyte glycoprotein in HIV-1 associated neurocognitive disorder: a cross-sectional cohort study. J Neuroinflammation 2010, 7:79. BioMed Central Full Text
  • [80]Jayadev S, Yun B, Nguyen H, Yokoo H, Morrison RS, Garden GA: The glial response to CNS HIV infection includes p53 activation and increased expression of p53 target genes. J Neuroimmune Pharmacol 2007, 2(4):359-370.
  • [81]Bartzokis G: Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2011, 32(8):1341-1371.
  • [82]Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL: Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical "disconnection" in aging and Alzheimer's disease. Neurobiol Aging 2004, 25(7):843-851.
  • [83]Borjabad A, Morgello S, Chao W, Kim SY, Brooks AI, Murray J, Potash MJ, Volsky DJ: Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders. PLoS Pathog 2011, 7(9):e1002213.
  • [84]Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, Ellis RJ, Rodriguez B, Coombs RW, Schifitto G: Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 2009, 23(11):1359-1366.
  • [85]Garvey L, Winston A, Walsh J, Post F, Porter K, Gazzard B, Fisher M, Leen C, Pillay D, Hill T: Antiretroviral therapy CNS penetration and HIV-1-associated CNS disease. Neurology 2011, 76(8):693-700.
  • [86]Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT: Reactive glia not only associates with plaques but also parallels tangles in Alzheimer's disease. Am J Pathol 2011, 179(3):1373-1384.
  • [87]Mandybur TI: Cerebral amyloid angiopathy and astrocytic gliosis in Alzheimer's disease. Acta Neuropathol 1989, 78(3):329-331.
  • [88]Xing HQ, Hayakawa H, Gelpi E, Kubota R, Budka H, Izumo S: Reduced expression of excitatory amino acid transporter 2 and diffuse microglial activation in the cerebral cortex in AIDS cases with or without HIV encephalitis. J Neuropathol Exp Neurol 2009, 68(2):199-209.
  • [89]Gelman BB: Diffuse microgliosis associated with cerebral atrophy in the acquired immunodeficiency syndrome. Ann Neurol 1993, 34(1):65-70.
  • [90]Paul RH, Yiannoutsos CT, Miller EN, Chang L, Marra CM, Schifitto G, Ernst T, Singer E, Richards T, Jarvik GJ: Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity. J Neuropsychiatry Clin Neurosci 2007, 19(3):283-292.
  • [91]Borjabad A, Volsky DJ: Common Transcriptional Signatures in Brain Tissue from Patients with HIV-Associated Neurocognitive Disorders, Alzheimer's Disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 2012, 7(4):914-926.
  文献评价指标  
  下载次数:14次 浏览次数:6次