期刊论文详细信息
BMC Genomics
Functional innovations of three chronological mesohexaploid Brassica rapa genomes
HyeRan Kim4  Sang Un Park1  Sung Ran Min2  Dae-Soo Kim2  Ill-Sup Nou5  Young Han Lee3  Min Keun Kim3  Kyungbong Yang4  Inkyu Park1  Jae-Pil Choi2  Jeongyeo Lee2  Jungeun Kim4 
[1] College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea;Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea;Division of Environment-Friendly Research, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, Republic of Korea;Biosystems & Bioengineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea;Department of Horticulture, Sunchon National University, Suncheon 540-742, Republic of Korea
关键词: Multi-retention genes;    Single-retention genes;    Fast-evolving genes;    Chronological genomes;    Brassica rapa;   
Others  :  1216467
DOI  :  10.1186/1471-2164-15-606
 received in 2014-02-25, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Background

The Brassicaceae family is an exemplary model for studying plant polyploidy. The Brassicaceae knowledge-base includes the well-annotated Arabidopsis thaliana reference sequence; well-established evidence for three rounds of whole genome duplication (WGD); and the conservation of genomic structure, with 24 conserved genomic blocks (GBs). The recently released Brassica rapa draft genome provides an ideal opportunity to update our knowledge of the conserved genomic structures in Brassica, and to study evolutionary innovations of the mesohexaploid plant, B. rapa.

Results

Three chronological B. rapa genomes (recent, young, and old) were reconstructed with sequence divergences, revealing a trace of recursive WGD events. A total of 636 fast evolving genes were unevenly distributed throughout the recent and young genomes. The representative Gene Ontology (GO) terms for these genes were ‘stress response’ and ‘development’ both through a change in protein modification or signaling, rather than by enhancing signal recognition. In retention patterns analysis, 98% of B. rapa genes were retained as collinear gene pairs; 77% of those were singly-retained in recent or young genomes resulting from death of the ancestral copies, while others were multi-retained as long retention genes. GO enrichments indicated that single retention genes mainly function in the interpretation of genetic information, whereas, multi-retention genes were biased toward signal response, especially regarding development and defense. In the recent genome, 13,302, 5,790, and 20 gene pairs were multi-retained following Brassica whole genome triplication (WGT) events with 2, 3, and 4 homoeologous copies, respectively. Enriched GO-slim terms from B. rapa homomoelogues imply that a major effect of the B. rapa WGT may have been to acquire environmental adaptability or to change the course of development. These homoeologues seem to more frequently undergo subfunctionalization with spatial expression patterns compared with other possible events including nonfunctionalization and neofunctionalization.

Conclusion

We refined Brassicaceae GB information using the latest genomic resources, and distinguished three chronologically ordered B. rapa genomes. B. rapa genes were categorized into fast evolving, single- and multi-retention genes, and long retention genes by their substitution rates and retention patterns. Representative functions of the categorized genes were elucidated, providing better understanding of B. rapa evolution and the Brassica genus.

【 授权许可】

   
2014 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630182123368.pdf 2197KB PDF download
Figure 6. 139KB Image download
Figure 5. 92KB Image download
Figure 4. 84KB Image download
Figure 3. 52KB Image download
Figure 2. 228KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Nagaharu U: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 1935, 7:389-452.
  • [2]Priya P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D: Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 2008, 9:113.
  • [3]Lagercrantz U: Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 1998, 150(3):1217-1228.
  • [4]Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ: Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 2005, 171(2):765-781.
  • [5]Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, et al.: The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 2011, 43(10):1035-1039.
  • [6]Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S: Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 2013, 14:664.
  • [7]Levin DA: Polyploidy and novelty in flowering plants. Am/ Nat 1983, 122:1-25.
  • [8]Stephens SG: Possible significance of duplications in evolution. Adv Genet 1951, 4:247-265.
  • [9]Jackson S, Chen ZJ: Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 2010, 13(2):153-159.
  • [10]Inititiative TG: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408(6814):796-815.
  • [11]Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH: Synteny and collinearity in plant genomes. Science 2008, 320(5875):486-488.
  • [12]Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K: Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 2011, 16(2):108-116.
  • [13]Yang YW, Lai KN, Tai PY, Li WH: Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 1999, 48(5):597-604.
  • [14]Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I: Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 2006, 18(6):1348-1359.
  • [15]Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I: Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 2006, 103(13):5224-5229.
  • [16]Schranz ME, Lysak MA, Mitchell-Olds T: The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 2006, 11(11):535-542.
  • [17]Mandáková T, Lysak MA: Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 2008, 20(10):2559-2570.
  • [18]Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X: Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 2013, 25(5):1541-1554.
  • [19]Hufton AL, Panopoulou G: Polyploidy and genome restructuring: a variety of outcomes. Curr Opin Genet Dev 2009, 19(6):600-606.
  • [20]Blanc G, Hokamp K, Wolfe KH: A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 2003, 13(2):137-144.
  • [21]Edger PP, Pires JC: Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 2009, 17(5):699-717.
  • [22]Freeling M, Thomas BC: Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 2006, 16(7):805-814.
  • [23]Rosado A, Raikhel NV: Application of the gene dosage balance hypothesis to auxin-related ribosomal mutants in Arabidopsis. Plant Signal Behav 2010, 5(4):450-452.
  • [24]Blanc G, Wolfe KH: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 2004, 16(7):1679-1691.
  • [25]Van de Peer Y, Maere S, Meyer A: The evolutionary significance of ancient genome duplications. Nat Rev Genet 2009, 10(10):725-732.
  • [26]Lysak MA, Koch MA, Pecinka A, Schubert I: Chromosome triplication found across the tribe Brassiceae. Genome Res 2005, 15(4):516-525.
  • [27]Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KF: Plant genome sequencing - applications for crop improvement. Curr Opin Biotechnol 2014, 26:31-37.
  • [28]De Bodt S, Maere S, Van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 2005, 20(11):591-597.
  • [29]Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen JQ: Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics 2011, 285(1):79-90.
  • [30]Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S: Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 2002, 14(7):1441-1456.
  • [31]Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR: Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol 2012, 4(3):294-306.
  • [32]Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S: Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics 2014, 15(1):3.
  • [33]Kim J, Lim CJ, Lee BW, Choi JP, Oh SK, Ahmad R, Kwon SY, Ahn J, Hur CG: A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant kingdom. Mol Cells 2012, 33(4):385-392.
  • [34]Kazan K, Manners JM: Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 2009, 14(7):373-382.
  • [35]Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y: Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 2003, 3(1–4):117-129.
  • [36]Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, de Pamphilis CW: Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473(7345):97-100.
  • [37]Wendrich JR, Weijers D: The Arabidopsis embryo as a miniature morphogenesis model. New Phytol 2013, 199(1):14-25.
  • [38]Pernisová M, Kuderová A, Hejátko J: Cytokinin and auxin interactions in plant development: metabolism, signalling, transport and gene expression. Curr Protein Pept Sci 2011, 12(2):137-147.
  • [39]Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X: Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PloS One 2012, 7(5):e36442.
  • [40]Moore RC, Purugganan MD: The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 2005, 8(2):122-128.
  • [41]Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA: The fate of duplicated genes in a polyploid plant genome. Plant J 2012, 74(1):143-153.
  • [42]Pont C, Murat F, Confolent C, Balzergue S, Salse J: RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol 2011, 12(12):R119.
  • [43]He G, Elling AA, Deng XW: The epigenome and plant development. Annu Rev Plant Biol 2011, 62:411-435.
  • [44]Galtier N, Gouy M: Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol 1998, 15(7):871-879.
  • [45]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34:W609-612.
  • [46]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17(1):32-43.
  • [47]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7(10):986-995.
  文献评价指标  
  下载次数:29次 浏览次数:0次