BMC Evolutionary Biology | |
Phylogeography and dispersal in the velvet gecko (Oedura lesueurii), and potential implications for conservation of an endangered snake (Hoplocephalus bungaroides) | |
Richard Shine3  Jonathan Webb3  David Pike2  Benjamin Croak3  Sylvain Dubey1  | |
[1] Department of Ecology and Evolution, Biophore Bld, University of Lausanne, Lausanne 1015, Switzerland;School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia;School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia | |
关键词: Conservation; Landscape genetics; Reptile; Dispersal; Phylogeography; Australia; | |
Others : 1141212 DOI : 10.1186/1471-2148-12-67 |
|
received in 2012-03-15, accepted in 2012-05-02, 发布年份 2012 | |
【 摘 要 】
Background
To conserve critically endangered predators, we also need to conserve the prey species upon which they depend. Velvet geckos (Oedura lesueurii) are a primary prey for the endangered broad-headed snake (Hoplocephalus bungaroides), which is restricted to sandstone habitats in southeastern Australia. We sequenced the ND2 gene from 179 velvet geckos, to clarify the lizards’ phylogeographic history and landscape genetics. We also analysed 260 records from a longterm (3-year) capture-mark-recapture program at three sites, to evaluate dispersal rates of geckos as a function of locality, sex and body size.
Results
The genetic analyses revealed three ancient lineages in the north, south and centre of the species’ current range. Estimates of gene flow suggest low dispersal rates, constrained by the availability of contiguous rocky habitat. Mark-recapture records confirm that these lizards are highly sedentary, with most animals moving < 30 m from their original capture site even over multi-year periods.
Conclusion
The low vagility of these lizards suggests that they will be slow to colonise vacant habitat patches; and hence, efforts to restore degraded habitats for broad-headed snakes may need to include translocation of lizards.
【 授权许可】
2012 Dubey et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150326042528195.pdf | 1000KB | download | |
Figure 4. | 61KB | Image | download |
Figure 3. | 47KB | Image | download |
Figure 2. | 17KB | Image | download |
Figure 1. | 78KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Finnoff D, Tschirhart J: Protecting an endangered species while harvesting its prey in a general equilibrium ecosystem model. Land Economics 2003, 79:160-180.
- [2]Hanson MB, Baird RW, Ford JKB, et al.: Species and stock identification of prey consumed by endangered southern resident killer whales in their summer range. Endang Species Res 2010, 11:69-82.
- [3]Pike DA, Webb JK, Shine R: Removing forest canopy cover restores a reptile assemblage. Ecol Appl 2011, 21:274-280.
- [4]Pike DA, Webb JK, Shine R: Chainsawing for conservation: ecologically-informed tree removal for habitat management. Ecol Manag Restor 2011, 12:110-118.
- [5]Boyles JG, Storm JJ: The perils of picky eating: dietary breadth is related to extinction risk in insectivorous bats. PLoS One 2007, 2:e672.
- [6]Webb JK, Shine R: Ecological characteristics of a threatened snake species, Hoplocephalus bungaroides (Serpentes, Elapidae). Anim Conserv 1998, 1:185-193.
- [7]Krefft G: The Snakes of Australia: An Illustrated and Descriptive Catalogue of all the Known Species. Government Printer, Sydney: Thomas Richards; 1869.
- [8]Shine R, Webb JK, Fitzgerald M, Sumner J: The impact of bush-rock removal on an endangered snake species, Hoplocephalus bungaroides (Serpentes: Elapidae). Wildlife Res 1998, 25:285-295.
- [9]Pringle RM, Webb JK, Shine R: Canopy structure, microclimate and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology 2003, 10:2668-2679.
- [10]Webb JK, Brook BW, Shine R: Collectors endanger Australia’s most threatened snake, the broad-headed snake Hoplocephalus bungaroides. Oryx 2002, 2:170-181.
- [11]Croak BM, Pike DA, Webb JK, Shine R: Using artificial rocks to restore non-renewable shelter sites in human-degraded systems: colonization by fauna. Restor Ecol 2010, 4:428-438.
- [12]Dubey S, Sumner J, Pike DA, Keogh JS, Webb JK, Shine R: Genetic connectivity among populations of an endangered snake species from southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol Evol 2011, 1:218-227.
- [13]Schlesinger CA, Shine R: Choosing a rock: perspectives of a commercial bush-rock collector and a saxicolous lizard. Biol Conserv 1994, 67:49-56.
- [14]Webb JK, Pike D, Shine R: Population ecology of the velvet gecko, Oedura lesueurii in southern Australia: implications for the persistence of an endangered snake. Aust Ecol 2008, 33:839-847.
- [15]Downes S, Adams M: Geographic variation in antisnake tactics: The evolution of scent-mediated behavior in a lizard. Evolution 2001, 3:605-615.
- [16]Webb JK, Du WG, Pike DA, Shine R: Chemical cues from both dangerous and non-dangerous snakes elicit antipredator behaviours from a nocturnal lizard. Anim Behav 2009, 77:1471-1478.
- [17]Riechert SE: Investigation of potential gene flow limitation of behavioral adaptation in an arid lands spider. Behav Ecol Sociobiol 1993, 32:355-363.
- [18]Pafilis P, Foufopoulos J, Poulakakis N, Lymberakis P, Valakos ED: Tail shedding in island lizards [Lacertidae, Reptilia]: decline of antipredator defenses in relaxed predation environments. Evolution 2009, 63:1262-1278.
- [19]Dubey S, Shine R: Evolutionary diversification of the lizard genus Bassiana (Scincidae) across southern Australia. PLoS One 2010, 5:e12982.
- [20]Sumner J, Webb JK, Shine R, Keogh JS: Molecular and morphological assessment of Australia’s most endangered snake, Hoplocephalus bungaroides reveals two evolutionary significant units for conservation. Conserv Genet 2010, 11:747-758.
- [21]Branagan D, Packham G: Field Geology of New South Wales. Revised editionth edition. UNSW: NSW Department of Mineral Resources; 2000.
- [22]Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD, Keogh JS, Melville J, Moritz C, Porch N, Sniderman JMK, Sunnucks P, Weston PH: Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr 2011, 38:1635-1656.
- [23]Markgraf V, McGlone M, Hope G: Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems - a southern perspective. Trends Ecol Evol 1995, 10:143-147.
- [24]Wilson S, Swan G: A complete guide to reptiles of Australia. New Holland Publisher: Third edition; 2010.
- [25]Hugall AF, Foster R, Hutchinson M, Lee MSY: Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biol J Linn Soc 2008, 93:343-358.
- [26]Sanders KL, Lee MSY, Leys R, Foster R, Keogh JS: Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J Evol Biol 2008, 3:682-695.
- [27]Skinner A, Lee SYM, Hutchinson MH: Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol Biol 2008, 8:310. BioMed Central Full Text
- [28]Oliver PM, Sanders KL: Molecular evidence for Gondwanan origins of multiple lineages within a diverse Australasian gecko radiation. J Biogeogr 2009, 36:2044-2055.
- [29]Oliver P, Hugall A, Adams M, Cooper SJB, Hutchinson M: Genetic elucidation of cryptic and ancient diversity in a group of Australian diplodactyline geckos: the Diplodactylus vittatus complex. Mol Phylogenet Evol 2007, 44:77-88.
- [30]Oliver PM, Adams M, Doughty P: Molecular evidence for ten species and Oligo-Miocene vicariance within a nominal Australian gecko species (Crenadactylus ocellatus, Diplodactylidae). BMC Evol Biol 2010, 10:386. BioMed Central Full Text
- [31]Oliver PM, Bauer AM: Systematics and evolution of the Australian knob-tail geckos (Nephrurus, Carphodactylidae, Gekkota): plesiomorphic grades and biome shifts through the Miocene. Mol Phylogenet Evol 2011, 59:664-674.
- [32]Dubey S, Shine R: Geographic variation in the age of temperate-zone reptile and amphibian species: southern Hemisphere species are older. Biol Letters 2011, 7:96-97.
- [33]Endler JA: Natural selection in the wild. NJ: Princeton Univ. Press; 1986.
- [34]Urban MC: Microgeographic adaptations of spotted salamander morphological defenses in response to a predaceous salamander and beetle. Oikos 2010, 119:646-658.
- [35]Dubey S, Shine R: Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae). Mol Ecol 2010, 19:886-897.
- [36]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
- [37]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:692-704.
- [38]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
- [39]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
- [40]Schwarz G: Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
- [41]Swofford DL, PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sunderland, MA: Sinauer Associates; 2001.
- [42]Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
- [43]Kimura M: A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
- [44]Mantel N: Detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27:209.
- [45]Goudet J, FSTAT: A Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9.3.2. 2002. Available at: http://www.unil.ch/Jahia/site/dee/op/edit/pid/36921 webcite
- [46]Akaike H: Information theory as an extension of the maximum likelihood principle. In Second International Symposium on Information Theory. Edited by Petrov BN, Csaki F. Budapest: Akademiai Kiado; 1973:267-281.
- [47]Burnham KP, Anderson DR: Model Selection and Inference: A Pratical Information-Theoretic Approach. New York: Springer; 1998.
- [48]Dupanloup I, Schneider S, Excoffier L: A simulated annealing approach to define the genetic structure of populations. Mol Ecol 2002, 11:2571-2581.
- [49]Drummond AJ, Rambaut A: BEAST v1.4. 2006. Available at: http://beast.bio.ed.ac.uk webcite
- [50]Drummond AJ, Ho SYW, Rawlence N, Rambaut A: A rough guide to BEAST 1.4. 2007. Available at: http://beast.bio.ed.ac.uk webcite
- [51]Zamudio KR, Greene HW: Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for Neotropical biogeography, systematics, and conservation. Biol J Linn Soc 1997, 62:421-442.
- [52]Macey JR, Schulte JA, Larson A, Tuniyev BS, Orlov N, Papenfuss TJ: Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol Phylogenet Evol 1999, 12:250-272.
- [53]Daniels SR, Mouton PFN, Du Toit DA: Molecular data suggest that melanistic ectotherms at the south-western tip of Africa are the products of Miocene climatic events: evidence from cordylid lizards. J Zool Lond 2004, 263:373-383.
- [54]Torres-Carvajal O, de Queiroz K: Phylogeny of oplocercine lizards (Squamata: Iguania) with estimates of relative divergence times. Mol Phylogenet Evol 2009, 50:31-43.
- [55]ESRI: ArcGIS Desktop: Release 9. Redlands, CA: Environmental Systems Research Institute; 2011.