期刊论文详细信息
BMC Evolutionary Biology
Spatial aspects of prebiotic replicator coexistence and community stability in a surface-bound RNA world model
Tamás Czárán1  Balázs Könnyű2 
[1] Hungarian Academy of Sciences, Eötvös Loránd University Research Group in Theoretical Biology and Evolutionary Ecology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary;Parmenides Foundation, Kirchplatz 1, D-82049 Munich/Pullach, Germany
关键词: Prebiotic genome size;    Metabolic model;    Parasite;    RNA world;    Coexistence;    Prebiotic replicators;   
Others  :  1085996
DOI  :  10.1186/1471-2148-13-204
 received in 2013-07-25, accepted in 2013-09-17,  发布年份 2013
PDF
【 摘 要 】

Background

The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution.

Results

Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community.

Conclusion

The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system.

【 授权许可】

   
2013 Könnyű and Czárán; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113182222127.pdf 1588KB PDF download
Figure 8. 21KB Image download
Figure 7. 77KB Image download
Figure 6. 19KB Image download
Figure 5. 494KB Image download
Figure 4. 82KB Image download
Figure 3. 69KB Image download
Figure 2. 67KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Case TJ: An illustrated guide to theroetical ecology. New York: Oxford University Press; 2000.
  • [2]Meszéna G, Gyllenberg M, Pásztor L, Metz JAJ: Competitive exclusion and limiting similarity: a unified theory. Theor Popul Biol 2006, 69:68-87.
  • [3]Nelson KE, Levy M, Miller SL: Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 2000, 97:868-3871.
  • [4]Robertson MP, Joyce GF: The origins of the RNA world. Cold Spring Harb Perspect Biol 2012, 4:1-22.
  • [5]Szathmáry E: The origin of replicators and reproducers. Philos Trans R Soc Lond B Biol Sci 2006, 361:1761-1776.
  • [6]Gilbert W: Origin of life: the RNA world. Nature 1986, 319:618.
  • [7]Joyce GF: The antiquity of RNA-based evolution. Nature 2002, 418:214-221.
  • [8]Lilley DMJ: The origins of RNA catalysis in ribozyme. Trends Biochem Sci 2003, 28:495-501.
  • [9]Chen X, Li N, Ellington AD: Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 2007, 4:633-655.
  • [10]Cech TR: Crawling out of the RNA world. Cell 2009, 136:599-602.
  • [11]Khvorova A, Kwak YG, Tamkun M, Majerfeld I, Yarus M: RNAs that bind and change the permeability of phospholipid membranes. Proc Natl Acad Sci USA 1999, 96:10649-10654.
  • [12]Szathmáry E, Gladkih I: Sub-exponential growth and coexistence of non-enzymatically replicating templates. J Theor Biol 1989, 138:55-58.
  • [13]Ma W, Yu C, Zhang W, Hu J: Nucleotide synthetase ribozymes may have emerged first in the RNA world. RNA 2007, 13:2012-2019.
  • [14]Garay J: Active centrum hypothesis: the origin of chiral homogenity and the RNA world. Biosystems 2011, 103:1-12.
  • [15]von Kiedrowski G: A self-replicatong hexadeoxynucleotide. Angew Chem Int Ed Engl 1986, 25:932-934.
  • [16]Scheuring I, Szathmáry E: Survival of replicators with parabolic growth tendency and exponential decay. J Theor Biol 2001, 212:99-105.
  • [17]Bag BG, von Kiedrowski G: Templates, autocatalysis and molecular replication. Pure and Applied Chem 1996, 68:2145-2152.
  • [18]Patzke V, von Kiedrowski G: Self replicating systems. ARKIVOC 2007, 8:293-310.
  • [19]Eigen M, Schuster P: The hypercycle. Berlin-Heidelberg-New York: Springer-Verlag; 1979.
  • [20]Maynard-Smith J: Hypercycles and the origin of life. Nature 1979, 280:445-446.
  • [21]Boerlijst C, Hogeweg P: Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Phisyca D 1991, 48:17-28.
  • [22]Kim P-J, Jeong H: Spatio-temporal dynamics in the origin of genetic information. Phisyca D 2005, 203:88-99.
  • [23]Szathmáry E, Demeter L: Group selection of early replicators and the origin of life. J Theor Biol 1987, 128:463-486.
  • [24]Czárán T, Szathmáry E: Coexistence of replicators in prebiotic evolution. In The Geometry of Ecological Interactions. Edited by Dieckmann U, Law R, Metz JAJ. Cambridge: IIASA and Cambridge University Press; 2000:116-134.
  • [25]Zintzaras E, Santos M, Szathmáry E: Living under the challenge of information decay: the stochastic corrector model vs. hypercycles. J Theor Biol 2002, 217:167-181.
  • [26]Fontanari J, Santos M, Szathmáry E: Coexistence and error propagation in pre-biotic vesicle models: a group selection approach. J Theor Biol 2006, 239:247-256.
  • [27]Könnyű B, Czárán T, Szathmáry E: Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution. BMC Evol Biol 2008, 8:267. BioMed Central Full Text
  • [28]Könnyű B, Czárán T: The evolution of enzyme specificity in the metabolic replicator model of prebiotic evolution. PLoS One 2011, 6:e20931.
  • [29]Hall N: The quest for the chemical roots of life. Chem Commun (Camb) 2004, 11:1247-1252.
  • [30]Kauffman S: At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. New York: Oxford University Press; 1995.
  • [31]Vasas V, Szathmáry E, Santos M: Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc Natl Acad Sci USA 2010, 107:1470-1475.
  • [32]Ferris JP: Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos Trans R Soc Lond B Biol Sci 2006, 361:1777-1786.
  • [33]Hazen RM, Filley TR, Goodfriend GA: Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci USA 2001, 98:5487-5490.
  • [34]Joshi PC, Aldersley MF, Ferris JP: Homochiral selectivity in RNA synthesis: montmorillonite-catalyzed quaternary reactions of D, L-purine with D, L- pyrimidine nucleotides. Orig Life Evol Biosph 2011, 41:213-236.
  • [35]Hanczyc MM, Mansy SS, Szostak JW: Mineral surface directed membrane assembly. Orig Life Evol Biosph 2007, 37:67-82.
  • [36]Biondi E, Branciamore S, Maurel M-C, Gallori E: Montmorillonite protection of an UV-irradiated harpine robozyme: evolution of the RNA world in a mineral environment. BMC Evol Biol 2007, 7:2. BioMed Central Full Text
  • [37]Franchi M, Ferris JP, Gallori E: Cations as mediators of the adsorption of nuclec acids on clay surfaces in prebiotic environments. Orig Life Evol Biosph 2003, 33:1-16.
  • [38]Landweber LF, Simon PJ, Wagner TA: Ribozyme engineering and early evolution. Bioscience 1998, 48:94-103.
  • [39]Bartel DP, Unrau PS: Constructing an RNA world. Trends Genet 1999, 15:M9-M13.
  • [40]Rohatgi R, Bartel DP, Szostak JW: Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for formation of 3′ - 5′ phosphodiester bond. J Am Chem Soc 1996, 118:3340-3344.
  • [41]Johnson WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP: RNA-catalyzed RNA polymerization: accurate and general RNA templated primer extension. Science 2001, 292:1319-1325.
  • [42]Wochner A, Attwater J, Coulson A, Holliger P: Ribozyme-catalyzed transcription of an active ribozyme. Science 2011, 332:209-212.
  • [43]Toffoli T, Margolus N: Cellular automata machines: a new environment for modelling. Cambridge USA: MIT Press; 1987.
  • [44]Niesert U, Harnasch D, Bresch C: Origin of life between Scylla and Charybdis. J Mol Evol 1981, 17:348-353.
  • [45]Niesert U: How many genes to start with? A computer simulation about the origin of life. Orig Life Evol Biosph 1987, 17:155-169.
  • [46]Manrubia SC, Poyatos JF: Motif selection in a model of evolving replicators: The role of surfaces and limited transport in network topology. Europhys Let 2003, 64:557-563.
  • [47]Kun Á, Santos M, Szathmáry E: Real ribozymes suggest a relaxed error threshold. Nature Gen 2005, 37:1008-1011.
  • [48]Wächtershäuser G: On the chemistry and evolution of the pioneer organism. Chem Biodivers 2007, 4:584-602.
  • [49]Deamer D, Weber AL: Bioenergetics and life’s origins. Cold Spring Harb Perspect Biol 2010, 2:a004929.
  文献评价指标  
  下载次数:76次 浏览次数:16次