期刊论文详细信息
BMC Complementary and Alternative Medicine
Bee venom effects on ubiquitin proteasome system in hSOD1G85R-expressing NSC34 motor neuron cells
Eun Jin Yang2  Sun-Mi Choi1  MuDan Cai2  Sun Hwa Lee2  Kang-Woo Lee2  So Young Jung2  Seon Hwy Kim2 
[1] Department of Medical Research, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Republic of Korea;Department of Acupuncture & Moxibustion, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Republic of Korea
关键词: NSC34 motor neuronal cells;    Amyotrophic lateral sclerosis (ALS);    Bee venom (BV);    Ubiquitin proteasome system (UPS);    hSOD1G85R;   
Others  :  1221067
DOI  :  10.1186/1472-6882-13-179
 received in 2013-02-12, accepted in 2013-07-11,  发布年份 2013
PDF
【 摘 要 】

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from a progressive loss of motor neurons. Familial ALS (fALS) is caused by missense mutations in Cu, Zn-superoxide dismutase 1 (SOD1) that frequently result in the accumulation of mutant protein aggregates that are associated with impairments in the ubiquitin-proteasome system (UPS). UPS impairment has been implicated in many neurological disorders. Bee venom (BV) extracted from honey bees has been used as a traditional medicine for treating inflammatory diseases and has been shown to attenuate the neuroinflammatory events that occur in a symptomatic ALS animal model.

Methods

NSC34 cells were transiently transfected with a WT or G85R hSOD1-GFP construct for 24 hrs and then stimulated with 2.5 μg/ml BV for 24 hrs. To determine whether a SOD1 mutation affects UPS function in NSC34 cells, we examined proteasome activity and performed western blotting and immunofluorescence using specific antibodies, such as anti-misfolded SOD1, anti-ubiquitin, anti-GRP78, anti-LC3, and anti-ISG15 antibodies.

Results

We found that GFP-hSOD1G85R overexpression induced SOD1 inclusions and reduced proteasome activity compared with the overexpression of GFP alone in NSC34 motor neuronal cells. In addition, we also observed that BV treatment restored proteasome activity and reduced the accumulation of ubiquitinated and misfolded SOD1 in GFP-hSOD1G85R-overexpressing NSC34 motor neuronal cells. However, BV treatment did not activate the autophagic pathway in these cells.

Conclusion

Our findings suggest that BV may rescue the impairment of the UPS in ALS models.

【 授权许可】

   
2013 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150725195444124.pdf 908KB PDF download
Figure 4. 51KB Image download
Figure 3. 88KB Image download
Figure 2. 57KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amytrophic lateral sclerosis. Nature 1993, 362:59-62.
  • [2]Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW: Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 1998, 281:1851-1854.
  • [3]Kabuta T, Suzuki Y, Wada K: Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J Biol Chem 2006, 281:30524-30533.
  • [4]Okado-Matsumoto A, Myint T, Fujii J, Taniguchi N: Gain in functions of mutant Cu, Zn-superoxide dismutases as a causative factor in familial amyotrophic lateral sclerosis: less reactive oxidant formation but high spontaneous aggregation and precipitation. Free Radic Res 2000, 33:65-73.
  • [5]Urushitani M, Kurisu J, Tsukita K, Takahashi R: Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 2002, 83:1030-1042.
  • [6]Kato S: Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences. Acta Neuropathol 2008, 115:97-114.
  • [7]Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC: Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 2006, 15:1209-1216.
  • [8]Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
  • [9]Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N, et al.: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
  • [10]Chen J, Lariviere WR: The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010, 92:151-183.
  • [11]Kwon YB, Kang MS, Kim HW, Ham TW, Yim YK, Jeong SH, Park DS, Choi DY, Han HJ, Beitz AJ, Lee JH: Antinociceptive effects of bee venom acupuncture (apipuncture) in rodent animal models: a comparative study of acupoint versus non-acupoint stimulation. Acupunct Electrother Res 2001, 26:59-68.
  • [12]Billingham ME, Morley J, Hanson JM, Shipolini RA, Vernon CA: Letter: An anti-inflammatory peptide from bee venom. Nature 1973, 245:163-164.
  • [13]Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH: The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci 2002, 71:191-204.
  • [14]Ip SW, Liao SS, Lin SY, Lin JP, Yang JS, Lin ML, Chen GW, Lu HF, Lin MW, Han SM, Chung JG: The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo 2008, 22:237-245.
  • [15]Romero-Curiel A, López-Carpinteyro D, Gamboa C, De la Cruz F, Zamudio S, Flores G: Apamin induces plastic changes in hippocampal neurons in senile Sprague–Dawley rats. Synapse 2011, 65:1062-1072.
  • [16]Doo AR, Kim ST, Kim SN, Moon W, Yin CS, Chae Y, Park HK, Lee H, Park HJ: Neuroprotective effects of bee venom pharmaceutical acupuncture in acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Neurol Res 2010, 32(suppl):88-91.
  • [17]Yang EJ, Jiang JH, Lee SM, Yang SC, Hwang HS, Lee MS, Choi SM: Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 2010, 7:69. BioMed Central Full Text
  • [18]Furukawa Y, O’Halloran TV: Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J Biol Chem 2005, 280:17266-17274.
  • [19]Münch C, O’Brien J, Bertolotti A: Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 2011, 108:3548-3553.
  • [20]Strong MJ, Kesavapany S, Pant HC: The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? J Neuropathol Exp Neurol 2005, 64:649-664.
  • [21]Kwon YB, Lee JD, Lee HJ, Han HJ, Mar WC, Kang SK, Beitz AJ, Lee JH: Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 2001, 90:271-280.
  • [22]Tu WC, Wu CC, Hsieh HL, Chen CY, Hsu SL: Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 2008, 52:318-329.
  • [23]Yang EJ, Kim SH, Yang SC, Lee SM, Choi SM: Melittin restores proteasome function in an animal model of ALS. J Neuroinflammation 2011, 8:69. BioMed Central Full Text
  • [24]Li B, Gu W, Zhang C, Huang XQ, Han KQ, Ling CQ: Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie 2006, 29:367-371.
  • [25]Chen J: Spinal processing of bee venom-induced pain and hyperalgesia. Sheng Li Xue Bao 2008, 60:645-652.
  • [26]Lee JH, Kown YB, Han HJ, Mar WC, Lee HJ, Yang IS, Beitz AJ, Kang SK: Bee venom pretreatment has both an antinociceptive and anti-inflammatory effect on carrageenan-induced inflammation. J Vet Med Sci 2001, 63:251-259.
  • [27]Doo AR, Kim SN, Kim ST, Park JY, Chung SH, Choe BY, Chae Y, Lee H, Yin CS, Park HJ: Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death. Brain Res 2012, 1429:106-115.
  • [28]Kim JI, Yang EJ, Lee MS, Kim YS, Huh Y, Cho IH, Kang S, Koh HK: Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson’s disease. Int J Neurosci 2011, 121:209-217.
  • [29]Basso M, Samengo G, Nardo G, Massignan T, D’Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, Giordana MT, Strong MJ, Estevez AG, Salmona M, Bendotti C, Bonetto V: Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One 2009, 4:e8130.
  • [30]Bendotti C, Atzori C, Piva R, Tortarolo M, Strong MJ, DeBiasi S, Migheli A: Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 2004, 63:113-119.
  • [31]Leigh PN, Whitwell H, Garofalo O, Buller J, Swash M, Martin JE, Gallo JM, Weller RO, Anderton BH: Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 1991, 14:775-788.
  • [32]Yorimitsu T, Klionsky DJ: Autophagy: molecular machinery for self-eating. Cell Death Differ 2005, 12:1542-1552.
  • [33]Di Noto L, Whitson LJ, Cao X, Hart PJ, Levine RL: Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. J Biol Chem 2005, 280:39907-39913.
  • [34]Hoffman EK, Wilcox HM, Scott RW, Siman R: Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J Neurol Sci 1996, 139:15-20.
  • [35]Hyun DH, Lee M, Halliwell B, Jenner P: Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 2003, 86:363-373.
  • [36]Johnston JA, Dalton MJ, Gurney ME, Kopito RR: Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophiclateral sclerosis. Proc Natl Acad Sci USA 2000, 97:12571-12576.
  • [37]Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S, Porrini M, Simeoni S, Crippa V, Onesto E, Palazzolo I, Rusmini P, Bolzoni E, Bendotti C, Poletti A: Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet 2007, 16:1604-1618.
  • [38]Cheroni C, Peviani M, Cascio P, Debiasi S, Monti C, Bendotti C: Accumulation of human and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Neurobiol Dis 2005, 18:509-522.
  • [39]Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R: CHIP promotes proteasomal degradation of familial ALSlinked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 2004, 90:231-244.
  • [40]Herrmann J, Lerman LO, Lerman A: Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007, 100:1276-1291.
  • [41]Wilkinson KA, Henley JM: Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 2010, 428:133-145.
  • [42]Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL: SUMO modification of Huntingtin and Huntington’s disease pathology. Science 2004, 304:100-104.
  • [43]Fei E, Jia N, Yan M, Ying Z, Sun Q, Wang H, Zhang T, Ma X, Ding H, Yao X, Shi Y, Wang G: SUMO-1 modification increases human SOD1 stability and aggregation. Biochem Biophys Res Commun 2006, 347:406-412.
  • [44]Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S: Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2003, 115:565-576.
  • [45]Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS: Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 1997, 69:1936-1944.
  • [46]Israelson A, Arbel N, Da Cruz S, Ilieva H, Yamanaka K, Shoshan-Barmatz V, Cleveland DW: Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron 2010, 67:575-587.
  • [47]Sasaki S: Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2011, 70:349-359.
  • [48]Bruijn LI, Miller TM, Cleveland DW: Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 2004, 27:723-749.
  • [49]Valentine JS, Doucette PA, Zittin Potter S: Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 2005, 74:563-593.
  • [50]Polymenidou M, Cleveland DW: The seeds of neurodegeneration: prion-like spreading in ALS. Cell 2011, 147:498-508.
  文献评价指标  
  下载次数:19次 浏览次数:5次