期刊论文详细信息
BMC Research Notes
Bone marrow-derived progenitor cells attenuate inflammation in lipopolysaccharide-induced acute respiratory distress syndrome
Grietje Beck5  Benito Yard3  Burkhard Tönshoff2  Christian Betzen1  Gregor Kowanetz6  Christine Dacho4  Neysan Rafat2 
[1] Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany;Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany;Department of Medicine V, Mannheim University Medical Center, University of Heidelberg, Heidelberg, Germany;Clinic for Anaesthesiology and Critical Care Medicine, Alfried-Krupp-Krankenhaus, Essen, Germany;Department for Anaesthesiology and Intensive Care Medicine, Dr. Horst-Schmidt Clinic, Wiesbaden, Germany;Department of Radiology, Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Heilbronn, Germany
关键词: Lipopolysaccharide;    Acute respiratory distress syndrome;    Cell therapy;    Bone marrow-derived progenitor cells;    Adult stem cells;   
Others  :  1129747
DOI  :  10.1186/1756-0500-7-613
 received in 2014-06-04, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among critically ill patients. Novel treatment strategies are required to address this common clinical problem. The application of exogenous adult stem cells was associated with a beneficial outcome in various pre-clinical models of ARDS. In the present study we evaluated the functional capacity and homing ability of bone marrow-derived progenitor cells (BMDPC) in vitro and investigated their potential as a treatment strategy in lipopolysaccharide (LPS)-induced ARDS.

Results

Evaluation of the BMDPC showed functional capacity to form endothelial outgrowth cell colonies, which stained positive for CD133 and CD31. Furthermore, DiI-stained BMDPC were demonstrated to home to injured lung tissue. Rats treated with BMDPC showed significantly reduced histopathological changes, a reduced expression of ICAM-1 and VCAM-1 by the lung tissue, an inhibition of proinflammatory cytokine synthesis, a reduced weight loss and a reduced mortality (p < 0.03) compared to rats treated with LPS alone.

Conclusions

These findings suggest that the application of exogenous BMDPC can attenuate inflammation in LPS-induced ARDS and thereby reduce the severity of septic organ damage. Cell therapy strategies using adult stem cells might therefore become a novel and alternative option in ARDS therapy.

【 授权许可】

   
2014 Rafat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226102545207.pdf 1732KB PDF download
Figure 3. 178KB Image download
Figure 2. 77KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Bhadade RR, de Souza RA, Harde MJ, Khot A: Clinical characteristics and outcomes of patients with acute lung injury and ARDS. J Postgrad Med 2011, 57:286-290.
  • [2]Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, Baudouin SV: Circulating endothelial cells in patients with septic shock. Am J RespirCrit Care Med 2001, 163:195-200.
  • [3]Orfanos SE, Mavrommati I, Korovesi I, Roussos C: Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intensive Care Med 2004, 30:1702-1714.
  • [4]Ware L, Matthay M: The acute respiratory distress syndrome. N Engl J Med 2000, 342:1334-1349.
  • [5]Ware LB: Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med 2006, 27:337-349.
  • [6]Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE: Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008, 299:637-645.
  • [7]Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, Lefrant J-Y, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L: Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008, 299:646-655.
  • [8]Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA: Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007, 179:1855-1863.
  • [9]Lee JW, Fang X, Gupta N, Serikov V, Matthay MA: Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A 2009, 106:16357-16362.
  • [10]Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA: Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 2013, 187:751-760.
  • [11]Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, Rojas M: Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. AJP - Lung Cell Mol Physiol 2007, 293:L131-L141.
  • [12]Rafat N, Hanusch C, Brinkkoetter PT, Schulte J, Brade J, Zijlstra JG, van der Woude FJ, van Ackern K, Yard BA, Beck GC: Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Crit Care Med 2007, 35:1677-1684.
  • [13]Rafat N, Tönshoff B, Bierhaus A, Beck GC: Endothelial progenitor cells in regeneration after acute lung injury: do they play a role? Am J Respir Cell Mol Biol 2013, 48:399-405.
  • [14]Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275:964-967.
  • [15]Rafat N, Kowanetz G, Krebs J, Tsagogiorgas C, Betzen C, Ghezel-Ahmadi V, Yard B, Beck G, Dacho C: Therapeutic Effects of Bone Marrow-derived Progenitor Cells in Lipopolysaccharide-induced Acute Respiratory Distress Syndrome. J Pulm Respir Med 2014, 4:2.
  • [16]Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000, 97:3422-3427.
  • [17]Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M: Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J RespirCrit Care Med 2005, 172:854-860.
  • [18]Sala E, Villena C, Balaguer C, Ríos A, Fernández-Palomeque C, Cosío BG, García J, Noguera A, Agustí A: Abnormal levels of circulating endothelial progenitor cells during exacerbations of COPD. Lung 2010, 188:331-338.
  • [19]Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numasaki M, Ueda S, Suzuki T, Sasaki H: Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 2004, 172:1266-1272.
  • [20]Lam CF, Liu YC, Hsu JK, Yeh PA, Su TY, Huang CC, Lin MW, Wu PC, Chang PJ, Tsai YC: Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits. Anesthesiology 2008, 108:392-401.
  • [21]Lam CF, Roan JN, Lee CH, Chang PJ, Huang CC, Liu YC, Jiang MJ, Tsai YC: Transplantation of Endothelial Progenitor Cells Improves Pulmonary Endothelial Function and Gas Exchange in Rabbits with Endotoxin-Induced Acute Lung Injury. Anesth Analg 2011, 112:620-627.
  • [22]Kähler CM, Wechselberger J, Hilbe W, Gschwendtner A, Colleselli D, Niederegger H, Boneberg E-M, Spizzo G, Wendel A, Gunsilius E, Patsch JR, Hamacher J: Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury. Respir Res 2007, 8:50. BioMed Central Full Text
  • [23]Mao M, Wang SN, Lv XJ, Wang Y, Xu JC: Intravenous delivery of bone marrow-derived endothelial progenitor cells improves survival and attenuates lipopolysaccharide-induced lung injury in rats 19. Shock 2010, 34:196-204.
  • [24]Wary KK, Vogel SM, Garrean S, Zhao YD, Malik AB: Requirement of alpha(4)beta(1) and alpha(5)beta(1) integrin expression in bone-marrow-derived progenitor cells in preventing endotoxin-induced lung vascular injury and edema in mice 1. Stem Cells 2009, 27:3112-3120.
  • [25]Gao X, Chen W, Liang Z, Chen L: Autotransplantation of circulating endothelial progenitor cells protects against lipopolysaccharide-induced acute lung injury in rabbit. Int Immunopharmacol 2011, 11:1584-1590.
  • [26]Rehman J, Li J, Orschell CM, March KL: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003, 107:1164-1169.
  • [27]Rojas M, Cárdenes N, Kocyildirim E, Tedrow JR, Cáceres E, Deans R, Ting A, Bermúdez C: Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep. Stem Cell Res Ther 2014, 5:42. BioMed Central Full Text
  • [28]Fan H, Goodwin AJ, Chang E, Zingarelli B, Borg K, Guan S, Halushka PV, Cook JA: Endothelial progenitor cells and a SDF-1α analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med 2014. [Epub ahead of print]
  • [29]Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W: Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004, 94:230-238.
  • [30]Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S: Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 2005, 39:733-742.
  • [31]Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000, 95:952-958.
  • [32]Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 2001, 88:167-174.
  • [33]Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7:430-436.
  • [34]Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, Maggiolini S, Squadroni L, Di Leo C, Burba I, Pesce M, Mircoli L, Capogrossi MC, Di Lelio A, Camisasca P, Morabito A, Colombo G, Pompilio G: Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre STem cEll Mobilization in Acute Myocardial Infarction (STEM-AMI) Trial. Eur J Heart Fail 2010, 12:1111-1121.
  • [35]Achilli F, Malafronte C, Maggiolini S, Lenatti L, Squadroni L, Gibelli G, Capogrossi MC, Dadone V, Gentile F, Bassetti B, Di Gennaro F, Camisasca P, Calchera I, Valagussa L, Colombo GI, Pompilio G: G-CSF treatment for STEMI: final 3-year follow-up of the randomised placebo-controlled STEM-AMI trial. Heart 2014, 100:574-581.
  • [36]Zeisberger SM, Zoller S, Riegel M, Chen S, Krenning G, Harmsen MC, Sachinidis A, Zisch AH: Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach. Genes Cells 2010, 15:671-687.
  文献评价指标  
  下载次数:17次 浏览次数:6次