期刊论文详细信息
BMC Complementary and Alternative Medicine
Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model
Sheila Nathan4  Man-Wah Tan2  Noorsaadah Abd Rahman3  Wageeh A Yehye1  Cin Kong4 
[1] Nanotechnology & Catalysis Research Centre (NANOCAT), Block 3A, Institute of Postgraduate Studies Building, University of Malaya, Kuala Lumpur, Malaysia;Current Affiliation: Department of Infectious Diseases Genentech, 1 DNA Way, 11-316 Mail Stop 33, South San Francisco, USA;Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia;School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
关键词: Anti-infectives;    C. elegans;    S. aureus;   
Others  :  1220395
DOI  :  10.1186/1472-6882-14-4
 received in 2013-08-15, accepted in 2014-01-03,  发布年份 2014
PDF
【 摘 要 】

Background

The limited antibiotic options for effective control of methicillin-resistant Staphylococcus aureus infections has led to calls for new therapeutic approaches to combat this human pathogen. An alternative approach to control MRSA is through the use of anti-infective agents that selectively disrupt virulence-mediated pathways without affecting microbial cell viability or by modulating the host natural immune defenses to combat the pathogen.

Methods

We established a C. elegansS. aureus liquid-based assay to screen for potential anti-infectives against S. aureus. The assay was utilized to screen 37 natural extracts and 29 synthetic compounds for the ability to extend the lifespan of infected nematodes. Disc diffusion and MIC microdilution tests were used to evaluate the anti-microbial properties of these natural extracts and synthetic compounds whilst in vivo bacterial CFU within the C. elegans gut were also enumerated.

Results

We screened a total of 37 natural extracts and 29 synthetic compounds for anti-infective properties. The screen successfully revealed 14 natural extracts from six plants (Nypa fruticans, Swietenia macrophylla, Curcuma longa, Eurycoma longifolia, Orthosiphonstamineus and Silybum eburneum) and one marine sample (Faunus ater) that improved the survival of S. aureus-infected worms by at least 2.8-fold as well as 14 synthetic compounds that prolonged the survival of S. aureus-infected nematodes by 4-fold or greater. An anti-microbial screen of all positive hits demonstrated that 8/28 hits had no effect on S. aureus growth. Of these 8 candidates, 5 of them also protected the worms from MRSA infection. We also noted that worms exposed to N. fruticans root and O. stamineus leaf extracts showed reduced intestinal colonization by live S. aureus. This suggests that these extracts could possibly activate host immunity to eliminate the bacteria or interfere with factor/s that prevents pathogen accumulation.

Conclusion

We have successfully demonstrated the utility of this liquid-based screen to identify anti-infective substances that prolong S. aureus-infected host survival without affecting bacterial cell viability.

【 授权许可】

   
2014 Kong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150722042927156.pdf 1484KB PDF download
Figure 10. 20KB Image download
Figure 9. 25KB Image download
Figure 8. 55KB Image download
Figure 7. 28KB Image download
Figure 6. 79KB Image download
Figure 5. 33KB Image download
Figure 4. 49KB Image download
Figure 3. 24KB Image download
Figure 2. 25KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Lowy FD: Staphylococcus aureus infections. N Engl J Med 1998, 339(8):520-532.
  • [2]Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I: Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997, 350(9092):1670-1673.
  • [3]Hiramatsu K: Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 2001, 1(3):147-155.
  • [4]Clatworthy AE, Pierson E, Hung DT: Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007, 3(9):541-548.
  • [5]Escaich S: Antivirulence as a new antibacterial approach for chemotherapy. Curr Opin Chem Biol 2008, 12(4):400-408.
  • [6]Rasko DA, Sperandio V: Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010, 9(2):117-128.
  • [7]Hamill P, Brown K, Jenssen H, Hancock REW: Novel anti-infectives: is host defence the answer? Curr Opin Biotechnol 2008, 19(6):628-636.
  • [8]Moy TI, Ball AR, Anklesaria Z, Casadei G, Lewis K, Ausubel FM: Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci USA 2006, 103(27):10414-10419.
  • [9]Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E: Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 2007, 3(2):e18.
  • [10]Okoli I, Coleman JJ, Tampakakis E, An WF, Holson E, Wagner F, Conery AL, Larkins-Ford J, Wu G, Stern A, et al.: Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One 2009, 4(9):e7025.
  • [11]Kirienko NV, Kirienko DR, Larkins-Ford J, Wahlby C, Ruvkun G, Ausubel FM: Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 2013, 13(4):406-416.
  • [12]Giacomotto J, Segalat L, Carre-Pierrat M, Gieseler K: Caenorhabditis elegans as a chemical screening tool for the study of neuromuscular disorders. Manual and semi-automated methods. Methods 2012, 56(1):103-113.
  • [13]Moy TI, Conery AL, Larkins-Ford J, Wu G, Mazitschek R, Casadei G, Lewis K, Carpenter AE, Ausubel FM: High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009, 4(7):527-533.
  • [14]Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM: Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 1999, 96(5):2408-2413.
  • [15]Begun J, Sifri CD, Goldman S, Calderwood SB, Ausubel FM: Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model. Infect Immun 2005, 73(2):872-877.
  • [16]Garvis S, Munder A, Ball G, de Bentzmann S, Wiehlmann L, Ewbank JJ, Tummler B, Filloux A: Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence. PLoS Pathog 2009, 5(8):e1000540.
  • [17]Irazoqui JE, Urbach JM, Ausubel FM: Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 2010, 10(1):47-58.
  • [18]Mellbye B, Schuster M: The sociomicrobiology of antivirulence drug resistance: a proof of concept. MBio 2011, 2(5):e00131.
  • [19]Wu K, Conly J, McClure JA, Elsayed S, Louie T, Zhang K: Caenorhabditis elegans as a host model for community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2010, 16(3):245-254.
  • [20]Sifri CD, Begun J, Ausubel FM, Calderwood SB: Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 2003, 71(4):2208-2217.
  • [21]JebaMercy G, Pandian SK, Balamurugan K: Changes in Caenorhabditis elegans life span and selective innate immune genes during Staphylococcus aureus infection. Folia Microbiol (Praha) 2011, 56(5):373-380.
  • [22]Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM: Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 2010, 6:e1000982.
  • [23]Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y: pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 1999, 126(1):1-11.
  • [24]Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, Sulaiman SF, Ooi KL, Khan NA, Muhammad TS, et al.: Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection. J Ethnopharmacol 2011, 139(2):657-663.
  • [25]Fries E, Puttmann W: Analysis of the antioxidant butylated hydroxytoluene (BHT) in water by means of solid phase extraction combined with GC/MS. Water Res 2002, 36(9):2319-2327.
  • [26]Yehye WA, Abdul Rahman N, Alhadi AA, Khaledi H, Ng SW, Ariffin A: Butylated hydroxytoluene analogs: synthesis and evaluation of their multipotent antioxidant activities. Molecules 2012, 17(7):7645-7665.
  • [27]Andrews JM: BSAC standardized disc susceptibility testing method (version 6). J Antimicrob Chemother 2007, 60(1):20-41.
  • [28]Wiegand I, Hilpert K, Hancock RE: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008, 3(2):163-175.
  • [29]Ooi SK, Lim TY, Lee SH, Nathan S: Burkholderia pseudomallei kills Caenorhabditis elegans through virulence mechanisms distinct from intestinal lumen colonization. Virulence 2012, 3(6):485-496.
  • [30]Liesen AP, de Aquino TM, Carvalho CS, Lima VT, de Araujo JM, de Lima JG, de Faria AR, de Melo EJ, Alves AJ, Alves EW, et al.: Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur J Med Chem 2010, 45(9):3685-3691.
  • [31]Sheikhy M, Jalilian AR, Novinrooz A, Motamedi-Sedeh F: Synthesis and in vitro antibacterial evaluation of some thiosemicarbazides and thiosemicarbazones. J Biomed Sci Eng 2010, 5:39-42.
  • [32]Pintilie O, Profire L, Sunel V, Popa M, Pui A: Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a D, L-methionine moiety. Molecules 2007, 12:103-113.
  • [33]Ali TE, El-Kazak AM: Synthesis and antimicrobial activity of some new 1,3-thiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and 1,3-thiazines incorporating acridine and 1,2,3,4-tetrahydroacridine moieties. Eur J Med Chem 2010, 1:6-11.
  • [34]Govindasami T, Pandey A, Palanivelu N, Pandey A: Synthesis, characterization and antibacterial activity of biologically important vanillin related hydrazone derivatives. Int J Org Chem 2011, 1:71-77.
  • [35]Aslam SN, Stevenson PC, Kokubun T, Hall DR: Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes. Microbiol Res 2009, 164(2):191-195.
  • [36]Kumar SN, Siji JV, Nambisan B, Mohandas C: Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol 2012, 28(11):3143-3150.
  • [37]Hope CK, Packer S, Wilson M, Nair SP: The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization. J Antimicrob Chemother 2009, 64(1):59-61.
  • [38]Tan MW, Mahajan-Miklos S, Ausubel FM: Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 1999, 96(2):715-720.
  • [39]Aballay A, Yorgey P, Ausubel FM: Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 2000, 10(23):1539-1542.
  • [40]Kim KJ, Yu HH, Cha JD, Seo SJ, Choi NY, You YO: Antibacterial activity of Curcuma longa L. against methicillin-resistant Staphylococcus aureus. Phytother Res 2005, 19(7):599-604.
  • [41]Moghaddam KM, Iranshahi M, Yazdi MC, Shahverdi AR: The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Int J Green Pharm 2009, 3(2):141-143.
  • [42]Tan S, Osman H, Wong K, Boey P, Padzilah I: Antimicrobial and antioxidant activities of Swietenia macrophylla leaf extracts. As J Food Ag-Ind 2009, 2(2):181-188.
  • [43]Velazquez C, Navarro M, Acosta A, Angulo A, Dominguez Z, Robles R, Robles-Zepeda R, Lugo E, Goycoolea FM, Velazquez EF, et al.: Antibacterial and free-radical scavenging activities of Sonoran propolis. J Appl Microbiol 2007, 103(5):1747-1756.
  • [44]Pramila DM, Xavier R, Marimuthu K, Kathiresan S, Khoo ML, Senthilkumar M, Sathya K, Sreeramanan S: Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). J Med Plants Res 2012, 6(2):331-335.
  • [45]Apetrei CL, Tuchilus C, Aprotosoaie AC, Oprea A, Malterud KE, Miron A: Chemical, antioxidant and antimicrobial investigations of Pinus cembra L. bark and needles. Molecules 2011, 16(9):7773-7788.
  • [46]Curcic MG, Stankovic MS, Radojevic ID, Stefanovic OD, Comic LR, Topuzovic MD, Djacic DS, Markovic SD: Biological effects, total phenolic content and flavonoid concentrations of fragrant yellow onion (Allium flavum L.). Med Chem 2012, 8(1):46-51.
  • [47]Scalbert A: Antimicrobial properties of tannins. Phytochemistry 1991, 30(12):3875-3883.
  • [48]Bhavsar AP, Brown ED: The worm turns for antimicrobial discovery. Nat Biotechnol 2006, 24(9):1098-1100.
  • [49]Pukkila-Worley R, Feinbaum R, Kirienko NV, Larkins-Ford J, Conery AL, Ausubel FM: Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection. PLoS Genet 2012, 8(6):e1002733.
  • [50]Reza H, Haq WM, Das AK, Rahman S, Jahan R, Rahmatullah M: Anti-hyperglycemic and antinociceptive activity of methanol leaf and stem extract of Nypa fruticans Wurmb. Pak J Pharm Sci 2011, 24(4):485-488.
  • [51]Abdelwahab SI, Mohan S, Mohamed Elhassan M, Al-Mekhlafi N, Mariod AA, Abdul AB, Abdulla MA, Alkharfy KM: Antiapoptotic and antioxidant properties of Orthosiphon stamineus Benth (Cat’s Whiskers): intervention in the Bcl-2-mediated apoptotic pathway. Evid Based Complement Alternat Med 2011, 2011:156765.
  • [52]Yam MF, Basir R, Asmawi MZ, Ismail Z: Antioxidant and hepatoprotective effects of Orthosiphon stamineus Benth. standardized extract. Am J Chin Med 2007, 35(1):115-126.
  • [53]Yam MF, Ang LF, Salman IM, Ameer OZ, Lim V, Ong LM, Ahmad M, Asmawil MZ, Basir R: Orthosiphon stamineus leaf extract protects against ethanol-induced gastropathy in rats. J Med Food 2009, 12(5):1089-1097.
  • [54]Yam MF, Mohamed EA, Ang LF, Pei L, Darwis Y, Mahmud R, Asmawi MZ, Basir R, Ahmad M: A simple isocratic HPLC method for the simultaneous determination of sinensetin, eupatorin, and 3′-hydroxy-5,6,7,4′-tetramethoxyflavone in Orthosiphon stamineus extracts. J Acupunct Meridian Stud 2012, 5(4):176-182.
  • [55]Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, Er HM, Ong CE: In vitro effects of active constituents and extracts of Orthosiphon stamineus on the activities of three major human cDNA-expressed cytochrome P450 enzymes. Chem Biol Interact 2011, 190(1):1-8.
  • [56]Squiban B, Kurz CL: C. elegans: an all in one model for antimicrobial drug discovery. Curr Drug Targets 2011, 12(7):967-977.
  文献评价指标  
  下载次数:23次 浏览次数:4次