BMC Systems Biology | |
Transdifferentiation of pancreatic cells by loss of contact-mediated signaling | |
Lutz Brusch1  Roland Zimm2  Walter de Back1  | |
[1] Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, 01062, Germany;Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland | |
关键词: Multicellular systems biology; Mathematical model; Islet cells; Acinar cells; Pancreas; Reprogramming; Intercellular communication; Lineage conversion; | |
Others : 1142352 DOI : 10.1186/1752-0509-7-77 |
|
received in 2012-10-10, accepted in 2013-07-04, 发布年份 2013 | |
【 摘 要 】
Background
Replacement of dysfunctional β-cells in the islets of Langerhans by transdifferentiation of pancreatic acinar cells has been proposed as a regenerative therapy for diabetes. Adult acinar cells spontaneously revert to a multipotent state upon tissue dissociation in vitro and can be stimulated to redifferentiate into β-cells. Despite accumulating evidence that contact-mediated signals are involved, the mechanisms regulating acinar-to-islet cell transdifferentiation remain poorly understood.
Results
In this study, we propose that the crosstalk between two contact-mediated signaling mechanisms, lateral inhibition and lateral stabilization, controls cell fate stability and transdifferentiation of pancreatic cells. Analysis of a mathematical model combining gene regulation with contact-mediated signaling reveals the multistability of acinar and islet cell fates. Inhibition of one or both modes of signaling results in transdifferentiation from the acinar to the islet cell fate, either by dedifferentiation to a multipotent state or by direct lineage switching.
Conclusions
This study provides a theoretical framework to understand the role of contact-mediated signaling in pancreatic cell fate control that may help to improve acinar-to-islet cell transdifferentiation strategies for β-cell neogenesis.
【 授权许可】
2013 de Back et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150328035553791.pdf | 1162KB | download | |
Figure 4. | 63KB | Image | download |
Figure 3. | 140KB | Image | download |
Figure 2. | 108KB | Image | download |
Figure 1. | 44KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Stadtfeld M, Hochedlinger K: Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010, 24(20):2239-2263. http://dx.doi.org/10.1101/gad.1963910 webcite
- [2]Plath K, Lowry WE: Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 2011, 12(4):253-265. http://dx.doi.org/10.1038/nrg2955 webcite
- [3]Cherry ABC, Daley GQ: Reprogramming cellular identity for regenerative medicine. Cell 2012, 148(6):1110-1122. http://dx.doi.org/10.1016/j.cell.2012.02.031 webcite
- [4]Sancho-Martinez I, Baek SH, Izpisua Belmonte JC: Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 2012, 14(9):892-899. http://dx.doi.org/10.1038/ncb2567 webcite
- [5]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 2006, 126(4):663-676.
- [6]Cohen DE, Melton D: Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 2011, 12(4):243-252. http://dx.doi.org/10.1038/nrg2938 webcite
- [7]Lin J, Li MR, Ti DD, Chen MX, Hao HJ, Zhao YL, Fu XB, Han WD: Microenvironment-evoked cell lineage conversion: Shifting the focus from internal reprogramming to external forcing. Ageing Res Rev 2012. http://dx.doi.org/10.1016/j.arr.2012.04.002 webcite
- [8]Li L, Bennett SAL, Wang L: Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 2012, 6:59-70. http://dx.doi.org/10.4161/cam.19583 webcite
- [9]Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011, 12(7):720-726. http://dx.doi.org/10.1038/embor.2011.88 webcite
- [10]Chen T, Yuan D, Wei B, Jiang J, Kang J, Ling K, Gu Y, Li J, Xiao L, Pei G: E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 2010, 28(8):1315-1325. http://dx.doi.org/10.1002/stem.456 webcite
- [11]Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, Stocker AM, Mutch CA, Funatsu N, Chenn A: Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 2010, 18(3):472-479. http://dx.doi.org/10.1016/j.devcel.2009.12.025 webcite
- [12]Soncin F, Mohamet L, Eckardt D, Ritson S, Eastham AM, Bobola N, Russell A, Davies S, Kemler R, Merry CLR, Ward CM: Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells 2009, 27(9):2069-2080. http://dx.doi.org/10.1002/stem.134 webcite
- [13]Minami K, Okano H, Okumachi A, Seino S: Role of cadherin-mediated cell-cell adhesion in pancreatic exocrine-to-endocrine transdifferentiation. J Biol Chem 1375, 283(20):3-13761. http://dx.doi.org/10.1074/jbc.M710034200 webcite
- [14]Zhu L, Tran T, Rukstalis JM, Sun P, Damsz B, Konieczny SF: Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol 2004, 24(7):2673-2681.
- [15]Efrat S: Stem Cell Therapy for Diabetes. New York: Humana Press; 2010.
- [16]Baeyens L, Rooman I, Bouwens L: Stem Cell Therapy for Diabetes. chap. Generation of beta cells from acinar cells. Edited by Efrat, S. New York: Humana Press; 2010.
- [17]Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455(7213):627-632. http://dx.doi.org/10.1038/nature07314 webcite
- [18]Rooman I, Heremans Y, Heimberg H, Bouwens L: Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 2000, 43(7):907-914. http://dx.doi.org/10.1007/s001250051468 webcite
- [19]Song KH, Ko SH, Ahn YB, Yoo SJ, Chin HM, Kaneto H, Yoon KH, Cha BY, Lee KW, Son HY: In vitro transdifferentiation of adult pancreatic acinar cells into insulin-expressing cells. Biochem Biophys Res Commun 2004, 316(4):1094-1100. http://dx.doi.org/10.1016/j.bbrc.2004.02.153 webcite
- [20]Baeyens L, Breuck SD, Lardon J, Mfopou JK, Rooman I, Bouwens L: In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 2005, 48:49-57. http://dx.doi.org/10.1007/s00125-004-1606-1 webcite
- [21]Minami K, Okuno M, Miyawaki K, Okumachi A, Ishizaki K, Oyama K, Kawaguchi M, Ishizuka N, Iwanaga T, Seino S: Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci U S A 2005, 102(42):15116-15121. http://dx.doi.org/10.1073/pnas.0507567102 webcite
- [22]Baeyens L, German MS, Ravassard P, Heimberg H, Bouwens L, Bonné S: Ngn3 expression during postnatal in vitro beta cell neogenesis induced by the JAK/STAT pathway. Cell Death Differ 2006, 13(11):1892-1899. http://dx.doi.org/10.1038/sj.cdd.4401883 webcite
- [23]Baeyens L, Bos T, Rooman I, Peleman C, Lahoutte T, German M, Heimberg H, Bouwens L, Bonné S: Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology 2009, 136(5):1750-1760.e13. http://dx.doi.org/10.1053/j.gastro.2009.01.047 webcite
- [24]Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, de Angelis MH, Lendahl U, Edlund H: Notch signalling controls pancreatic cell differentiation. Nature 1999, 400(6747):877-881. http://dx.doi.org/10.1038/23716 webcite
- [25]Huang S, Guo YP, May G, Enver T: Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 2007, 305(2):695-713. http://dx.doi.org/10.1016/j.ydbio.2007.02.036 webcite
- [26]Macarthur BD, Ma’ayan A, Lemischka IR: Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009, 10(10):672-681. http://dx.doi.org/10.1038/nrm2766 webcite
- [27]Enver T, Pera M, Peterson C, Andrews PW: Stem cell states, fates, and the rules of attraction. Cell Stem Cell 2009, 4(5):387-397. http://dx.doi.org/10.1016/j.stem.2009.04.011 webcite
- [28]Schittler D, Allgöwer F, Waldherr S, Hasenauer J: Cell differentiation modeled via a coupled two-switch regulatory network. Chaos 2010, 20. http://dx.doi.org/10.1063/1.3505000 webcite
- [29]Glauche I, Cross M, Loeffler M, Roeder I: Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem Cells 2007, 25(7):1791-1799. http://dx.doi.org/10.1634/stemcells.2007-0025 webcite
- [30]Zhou JX, Brusch L, Huang S: Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS One 2011, 6(3):e14752. http://dx.doi.org/10.1371/journal.pone.0014752 webcite
- [31]Gradwohl G, Dierich A, LeMeur M, Guillemot F: Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 2000, 97(4):1607-1611.
- [32]Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD: Control of endodermal endocrine development by Hes-1. Nat Genet 2000, 24:36-44. http://dx.doi.org/10.1038/71657 webcite
- [33]Lewis J: Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 1998, 9(6):583-589. http://dx.doi.org/10.1006/scdb.1998.0266 webcite
- [34]Collier JR, Monk NA, Maini PK, Lewis JH: Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 1996, 183(4):429-446. http://dx.doi.org/10.1006/jtbi.1996.0233 webcite
- [35]Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H: Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997, 385(6613):257-260. http://dx.doi.org/10.1038/385257a0 webcite
- [36]Krapp A, Knöfler M, Frutiger S, Hughes GJ, Hagenbüchle O, Wellauer PK: The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J 1996, 15(16):4317-4329.
- [37]Zecchin E, Mavropoulos A, Devos N, Filippi A, Tiso N, Meyer D, Peers B, Bortolussi M, Argenton F: Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol 2004, 268:174-184. http://dx.doi.org/10.1016/j.ydbio.2003.12.016 webcite
- [38]Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CVE: The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002, 32:128-134. http://dx.doi.org/10.1038/ng959 webcite
- [39]de Back W, Zhou JX, Brusch L: On the role of lateral stabilization during early patterning in the pancreas. J R Soc Interface 2013, 10(79):20120766. http://dx.doi.org/10.1098/rsif.2012.0766 webcite
- [40]Chiang MK, Melton DA: Single-cell transcript analysis of pancreas development. Dev Cell 2003, 4(3):383-393.
- [41]Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Cruz FD, Schwitzgebel V, Hayes-Jordan A, German M: Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 2000, 127(24):5533-5540.
- [42]Wilson ME, Scheel D, German MS: Gene expression cascades in pancreatic development. Mech Dev 2003, 120:65-80.
- [43]Schaffer AE, Freude KK, Nelson SB, Sander M: Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell 2010, 18(6):1022-1029. http://dx.doi.org/10.1016/j.devcel.2010.05.015 webcite
- [44]Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, Madsen OD, Carmeliet P, Dewerchin M, Collen D, Rousseau GG, Lemaigre FP: Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 2000, 20(12):4445-4454.
- [45]Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S: Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci U S A 2005, 102(5):1490-1495. http://dx.doi.org/10.1073/pnas.0405776102 webcite
- [46]Maestro MA, Boj SF, Luco RF, Pierreux CE, Cabedo J, Servitja JM, German MS, Rousseau GG, Lemaigre FP, Ferrer J: Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet 2003, 12(24):3307-3314. http://dx.doi.org/10.1093/hmg/ddg355 webcite
- [47]de Boer R, Pagie L: GRIND: Great Integrator Differential Equations. : ; http://bioinformatics.bio.uu.nl/rdb/grind.html webcite
- [48]Ermentrout B: XPPAUT: X-windows Phase Plane plus Auto. : ; http://www.math.pitt.edu/ webcite~bard/xpp/xpp.html
- [49]de Back W, Deutsch A, Starruß J: Morpheus: modeling and simulation environment for multicellular systems. http://imc.zih.tu-dresden.de/wiki/morpheus webcite
- [50]Norgaard GA, Jensen JN, Jensen J: FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 2003, 264(2):323-338.
- [51]Mangold O, Spemann H: Über Induktion von Medullarplatte durch Medullarplatte im jüngeren Keim, ein Beispiel homöogenetischer oder assimilatorischer Induktion. Wilhelm Roux Arch. EntwMech. Org 1927, 111:341-422.
- [52]Jørgensen MC, Ahnfelt-Rønne J, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J: An illustrated review of early pancreas development in the mouse. Endocr Rev 2007, 28(6):685-705. http://dx.doi.org/10.1210/er.2007-0016 webcite