| BMC Genomics | |
| Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes | |
| Ray Ming1  Jianping Wang1  Jong-Kuk Na2  | |
| [1] FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;Molecular Breeding Division, National Academy of Agricultural Science, RDA, Suwon 441-701, Republic of Korea | |
| 关键词: Sex-specific repeat; Repetitive sequence; Recombination suppression; Hermaphrodite-specific region of the Y chromosome (HSY); Carica papaya; Bacterial artificial chromosome (BAC); | |
| Others : 1217296 DOI : 10.1186/1471-2164-15-335 |
|
| received in 2013-10-02, accepted in 2014-04-22, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The papaya Y chromosome has undergone a degenerative expansion from its ancestral autosome, as a consequence of recombination suppression in the sex determining region of the sex chromosomes. The non-recombining feature led to the accumulation of repetitive sequences in the male- or hermaphrodite-specific regions of the Y or the Yh chromosome (MSY or HSY). Therefore, repeat composition and distribution in the sex determining region of papaya sex chromosomes would be informative to understand how these repetitive sequences might be involved in the early stages of sex chromosome evolution.
Results
Detailed composition of interspersed, sex-specific, and tandem repeats was analyzed from 8.1 megabases (Mb) HSY and 5.3 Mb corresponding X chromosomal regions. Approximately 77% of the HSY and 64% of the corresponding X region were occupied by repetitive sequences. Ty3-gypsy retrotransposons were the most abundant interspersed repeats in both regions. Comparative analysis of repetitive sequences between the sex determining region of papaya X chromosome and orthologous autosomal sequences of Vasconcellea monoica, a close relative of papaya lacking sex chromosomes, revealed distinctive differences in the accumulation of Ty3-Gypsy, suggesting that the evolution of the papaya sex determining region may accompany Ty3-Gypsy element accumulation. In total, 21 sex-specific repeats were identified from the sex determining region; 20 from the HSY and one from the X. Interestingly, most HSY-specific repeats were detected in two regions where the HSY expansion occurred, suggesting that the HSY expansion may result in the accumulation of sex-specific repeats or that HSY-specific repeats might play an important role in the HSY expansion. The analysis of simple sequence repeats (SSRs) revealed that longer SSRs were less abundant in the papaya sex determining region than the other chromosomal regions.
Conclusion
Major repetitive elements were Ty3-gypsy retrotransposons in both the HSY and the corresponding X. Accumulation of Ty3-Gypsy retrotransposons in the sex determining region of papaya X chromosome was significantly higher than that in the corresponding region of V. monoica, suggesting that Ty3-Gypsy could be crucial for the expansion and evolution of the sex determining region in papaya. Most sex-specific repeats were located in the two HSY expansion regions.
【 授权许可】
2014 Na et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150706023411729.pdf | 673KB | ||
| Figure 5. | 31KB | Image | |
| Figure 4. | 34KB | Image | |
| Figure 3. | 41KB | Image | |
| Figure 2. | 32KB | Image | |
| Figure 1. | 39KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Arumuganathan K, Earle ED: Nuclear DNA content of some important plant species. Plant Mol Biol Rep 1991, 9:208-218.
- [2]Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, et al.: The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 2008, 452(7190):991-996.
- [3]Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R: A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 2004, 427(6972):348-352.
- [4]Ming R, Yu Q, Moore PH: Sex determination in papaya. Semin Cell Dev Biol 2007, 18(3):401-408.
- [5]Zhang WL, Wang XU, Yu QY, Ming R, Jiang J: DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 2008, 18(12):1938-1943.
- [6]Chen CX, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R: Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 2007, 177(4):2481-2491.
- [7]Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MM, Sekioka T, Paterson AH, Ming R: High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 2004, 166(1):419-436.
- [8]Charlesworth B, Charlesworth D: The degeneration of Y chromosomes. Philos T Roy Soc B 2000, 355(1403):1563-1572.
- [9]Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, et al.: The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003, 423(6942):825-837.
- [10]Graves JAM, Koina E, SankoviC N: How the gene content of human sex chromosomes evolved. Curr Opin Genet Dev 2006, 16(3):219-224.
- [11]Yu QY, Hou S, Hobza R, Feltus FA, Wang X, Jin W, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang J, Paterson AH, Vyskot B, Ming R: Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Gen Genomics 2007, 278(2):177-185.
- [12]Ming R, Bendahmane A, Renner SS: Sex chromosomes in land plants. Annu Rev Plant Biol 2011, 62:485-514.
- [13]Younis RAA, Ismail OM, Soliman SS: Identification of sex-specific DNA markers for date palm (Phoenix dactylifera L.) using RAPD and ISSR techniques. J Agric Biol Sci 2008, 4(4):278-284.
- [14]Danilova TV, Karlov GI: Application of inter simple sequence repeat (ISSR) polymorphism for detection of sex-specific molecular markers in hop (Humulus lupulus L.). Euphytica 2006, 151(1):15-21.
- [15]Milewicz M, Sawicki J: Sex-linked markers in dioecious plants. Plant Omics J 2013, 6(2):144-149.
- [16]Navajas-Perez R, la Herran R, Jamilena M, Lozano R, Rejon CR, Rejon MR, Garrido-Ramos MA: Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 2005, 60(3):391-399.
- [17]Navajas-Perez R, Schwarzacher T, de la Herran R, Ruiz Rejon C, Ruiz Rejon M, Garrido-Ramos MA: The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 2006, 368:61-71.
- [18]Charlesworth D: Plant sex chromosome evolution. J Exp Bot 2013, 64(2):405-420.
- [19]Gschwend AR, Yu Q, Tong EJ, Zeng F, Han J, VanBuren R, Aryal R, Charlesworth D, Moore PH, Paterson AH, Ming R: Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci U S A 2012, 109(34):13716-13721.
- [20]Nagarajan N, Navajas-Perez R, Pop M, Alam M, Ming R, Paterson AH, Salzberg SL: Genome-wide analysis of repetitive elements in papaya. Trop Plant Biol 2008, 1:191-201.
- [21]Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R: Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A 2012, 109(34):13710-13715.
- [22]Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B: An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 2006, 115(5):376-382.
- [23]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001, 11(8):1441-1452.
- [24]Erlandsson R, Wilson JF, Paabo S: Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol 2000, 17(5):804-812.
- [25]Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M: Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A 1995, 92(9):3804-3808.
- [26]Steinemann M, Steinemann S: Degenerating Y-Chromosome of Drosophila-Miranda - a trap for retrotransposons. Proc Natl Acad Sci U S A 1992, 89(16):7591-7595.
- [27]Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B: The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 2009, 102(6):533-541.
- [28]Rice Chromosome 10 Sequencing C: In-depth view of structure, activity, and evolution of rice chromosome 10. Science 2003, 300(5625):1566-1569.
- [29]Mariotti B, Manzano S, Kejnovsky E, Vyskot B, Jamilena M: Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 2009, 281(3):249-259.
- [30]Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S: Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 2000, 44(6):723-732.
- [31]Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato KT, Fukuzawa H, Brennicke A, Ohyama K: The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci U S A 2001, 98(16):9454-9459.
- [32]Jamilena M, Mariotti B, Manzano S: Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 2008, 120(3–4):255-264.
- [33]Kuroda-Kawaguchi T, Skaletsky H, Brown LG, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Silber S, Oates R, Rozen S, Page DC: The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 2001, 29(3):279-286.
- [34]Hamilton AT, Huntley S, Tran-Gyamfi M, Baggott DM, Gordon L, Stubbs L: Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes. Genome Res 2006, 16(5):584-594.
- [35]Tadepally HD, Burger G, Aubry M: Evolution of C2H2-zinc finger genes and subfamilies in mammals: species-specific duplication and loss of clusters, genes and effector domains. BMC Evol Biol 2008, 8:176. BioMed Central Full Text
- [36]Na JK, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Navajas-Pérez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R: Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 2012, 13:176. BioMed Central Full Text
- [37]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1–4):462-467.
- [38]Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics 2005, 21(Suppl 1):i351-i358.
- [39]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
- [40]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
- [41]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
- [42]Edwards K, Johnstone C, Thompson C: A simple and rapid method for the preparation of plant genomic DNA for Pcr analysis. Nucleic Acids Res 1991, 19(6):1349-1349.
- [43]Blas AL, Ming R, Liu Z, Veatch OJ, Paull RE, Moore PH, Yu Q: Cloning of the papaya chromoplast-specific lycopene beta-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 2010, 152(4):2013-2022.
- [44]Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in Excel: population genetic software for teaching and research–an update. Bioinformatics 2012, 28(19):2537-2539.
PDF