期刊论文详细信息
BMC Neuroscience
Power spectral aspects of the default mode network in schizophrenia: an MEG study
Chun Kee Chung2  Jun Soo Kwon1  Sung Nyun Kim1  Wi Hoon Jung1  Kyung Soon Shin1  June Sic Kim2 
[1] Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea;Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
关键词: Schizophrenia;    Alpha;    Power spectral density;    Magnetoencephalography;    Default mode network;   
Others  :  1091186
DOI  :  10.1186/1471-2202-15-104
 received in 2014-02-05, accepted in 2014-08-28,  发布年份 2014
PDF
【 摘 要 】

Background

Symptoms of schizophrenia are related to deficits in self-monitoring function, which may be a consequence of irregularity in aspects of the default mode network (DMN). Schizophrenia can also be characterized by a functional abnormality of the brain activity that is reflected in the resting state. Oscillatory analysis provides an important understanding of resting brain activity. However, conventional methods using electroencephalography are restricted because of low spatial resolution, despite their excellent temporal resolution.

The aim of this study was to investigate resting brain oscillation and the default mode network based on a source space in various frequency bands such as theta, alpha, beta, and gamma using magnetoencephalography. In addition, we investigated whether these resting and DMN activities could distinguish schizophrenia patients from normal controls. To do this, the power spectral density of each frequency band at rest was imaged and compared on a spatially normalized brain template in 20 patients and 20 controls.

Results

The spatial distribution of DMN activity in the alpha band was similar to that found in previous fMRI studies. The posterior cingulate cortex (PCC) and lateral inferior parietal cortex were activated at rest, while the medial prefrontal cortex (MPFC) was deactivated at rest rather than during the task. Although the MPFC and PCC regions exhibited contrasting activation patterns, these two regions were significantly coherent at rest. The DMN and resting activities of the PCC were increased in schizophrenia patients, predominantly in the theta and alpha bands.

Conclusions

By using MEG to identify the DMN regions, predominantly in the alpha band, we found that both resting and DMN activities were augmented in the posterior cingulate in schizophrenia patients. Furthermore, schizophrenia patients exhibited decreased coherence between the PCC and MPFC in the gamma band at rest.

【 授权许可】

   
2014 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170133177.pdf 1775KB PDF download
Figure 5. 100KB Image download
Figure 4. 69KB Image download
Figure 3. 134KB Image download
Figure 2. 106KB Image download
Figure 1. 126KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Liddle PF: The symptoms of chronic schizophrenia: a re-examination of the positive–negative dichotomy. Br J Psychiatry 1987, 151:145-151.
  • [2]Frith C: Functional imaging and cognitive abnormalities. Lancet 1995, 346(8975):615-620.
  • [3]Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Theberge J, Schaefer B, Williamson P: Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 2007, 33(4):1004-1012.
  • [4]Jung WH, Kim JS, Jang JH, Choi JS, Jung MH, Park JY, Han JY, Choi CH, Kang DH, Chung CK, Kwon JS: Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophr Bull 2011, 37(4):839-849.
  • [5]Fletcher P, McKenna PJ, Friston KJ, Frith CD, Dolan RJ: Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage 1999, 9(3):337-342.
  • [6]Friston KJ: Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 1999, 395:68-79.
  • [7]Sponheim SR, Clementz BA, Iacono WG, Beiser M: Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia. Biol Psychiatry 2000, 48(11):1088-1097.
  • [8]Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD: Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007, 164(3):450-457.
  • [9]Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW: Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 1999, 11(1):80-95.
  • [10]Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL: A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98(2):676-682.
  • [11]Fox MD, Snyder AZ, Zacks JM, Raichle ME: Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 2006, 9(1):23-25.
  • [12]Fox MD, Raichle ME: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007, 8(9):700-711.
  • [13]Greicius MD, Krasnow B, Reiss AL, Menon V: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003, 100(1):253-258.
  • [14]Fransson P: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006, 44(14):2836-2845.
  • [15]Meltzer JA, Negishi M, Mayes LC, Constable RT: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 2007, 118(11):2419-2436.
  • [16]Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M: Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 2007, 104(32):13170-13175.
  • [17]Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 2003, 100(19):11053-11058.
  • [18]Jerbi K, Vidal JR, Ossandon T, Dalal SS, Jung J, Hoffmann D, Minotti L, Bertrand O, Kahane P, Lachaux JP: Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG. Front Syst Neurosci 2010, 4:27.
  • [19]Lachaux JP, Jung J, Mainy N, Dreher JC, Bertrand O, Baciu M, Minotti L, Hoffmann D, Kahane P: Silence is golden: transient neural deactivation in the prefrontal cortex during attentive reading. Cereb Cortex 2008, 18(2):443-450.
  • [20]Hall EL, Robson SE, Morris PG, Brookes MJ: The relationship between MEG and fMRI. Neuroimage 2013. in press, doi: 10.1016/j.neuroimage.2013.11.005
  • [21]Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W, Shah NJ: The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study. PLoS One 2014, 9(2):e88214.
  • [22]Brookes MJ, Wood JR, Stevenson CM, Zumer JM, White TP, Liddle PF, Morris PG: Changes in brain network activity during working memory tasks: a magnetoencephalography study. Neuroimage 2011, 55(4):1804-1815.
  • [23]de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M: Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 2010, 107(13):6040-6045.
  • [24]Maldjian JA, Davenport EM, Whitlow CT: Graph theoretical analysis of resting-state MEG data: identifying interhemispheric connectivity and the default mode. Neuroimage 2014, 96C:88-94.
  • [25]Chen JL, Ros T, Gruzelier JH: Dynamic changes of ICA-derived EEG functional connectivity in the resting state. Hum Brain Mapp 2013, 34(4):852-868.
  • [26]Hall EL, Woolrich MW, Thomaz CE, Morris PG, Brookes MJ: Using variance information in magnetoencephalography measures of functional connectivity. Neuroimage 2013, 67:203-212.
  • [27]Luckhoo H, Hale JR, Stokes MG, Nobre AC, Morris PG, Brookes MJ, Woolrich MW: Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage 2012, 62(1):530-541.
  • [28]Sakurai K, Takeda Y, Tanaka N, Kurita T, Shiraishi H, Takeuchi F, Nakane S, Sueda K, Koyama T: Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy: a MEG study. Epilepsy Res 2010, 89(2–3):176-184.
  • [29]Wilson TW, Franzen JD, Heinrichs-Graham E, White ML, Knott NL, Wetzel MW: Broadband neurophysiological abnormalities in the medial prefrontal region of the default-mode network in adults with ADHD. Hum Brain Mapp 2013, 34(3):566-574.
  • [30]Shin KS, Kim JS, Kim SN, Koh Y, Jang JH, An SK, O’Donnell BF, Chung CK, Kwon JS: Aberrant auditory processing in schizophrenia and in subjects at ultra-high-risk for psychosis. Schizophr Bull 2012, 38(6):1258-1267.
  • [31]Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC: Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 2005, 27:210-221.
  • [32]Taulu S, Simola J: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 2006, 51(7):1759-1768.
  • [33]Taulu S, Simola J, Kajola M: Applications of the signal space separation method. IEEE Trans Signal Proces 2005, 53(9):3359-3372.
  • [34]Cuffin BN, Cohen D: Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 1979, 47:132-146.
  • [35]Pascual-Marqui RD: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002, 24D:5-12.
  • [36]Rao CR, Mitra SK: Theory and application of constrained inverse of matrices. SIAM J Appl Math 1973, 24:473-488.
  • [37]Jensen O, Vanni S: A new method to identify multiple sources of oscillatory activity from magnetoencephalographic data. Neuroimage 2002, 15:568-574.
  • [38]Kim JS, Chung CK: Language lateralization using MEG beta frequency desynchronization during auditory oddball stimulation with one syllable words. Neuroimage 2008, 42(4):1499-1507.
  • [39]Robbins SM: Anatomical Standardization of the Human Brain in Euclidean 3-Space and on the Cortical 2-Manifold. Montreal: McGill University; 2003.
  • [40]Robbins SM, Evans AC, Collins DL, Whitesides S: Tuning and comparing spatial normalization methods. Med Image Anal 2004, 8(3):311-323.
  • [41]Benjamini Y, Hochberg Y: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995, 57(1):289-300.
  • [42]Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging 1999, 18(1):32-42.
  • [43]Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM: The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 1989, 53(1):1-31.
  • [44]Raichle ME, Snyder AZ: A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007, 37(4):1083-1090. discussion 1097–1089
  • [45]Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV, Pylkova LV: The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res 2011, 1402:67-79.
  • [46]Nunez PL, Wingeier BM, Silberstein RB: Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements and global binding of local networks. Hum Brain Mapp 2001, 13(3):125-164.
  • [47]Lopes da Silva F: Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 1991, 79(2):81-93.
  • [48]Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y, Herrmann WM: Frontal dysfunction in schizophrenia–a new electrophysiological classifier for research and clinical applications. Eur Arch Psychiatry Clin Neurosci 2000, 250(4):207-214.
  • [49]Koh Y, Shin KS, Kim JS, Choi JS, Kang DH, Jang JH, Cho KH, O’Donnell BF, Chung CK, Kwon JS: An MEG study of alpha modulation in patients with schizophrenia and in subjects at high risk of developing psychosis. Schizophr Res 2011, 126(1–3):36-42.
  • [50]Blumenfeld LD, Clementz BA: Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: single trials analysis using MEG. Clin Neurophysiol 2001, 112(9):1650-1659.
  • [51]Edgar JC, Chen YH, Lanza M, Howell B, Chow VY, Heiken K, Liu S, Wootton C, Hunter MA, Huang M, Miller GA, Canive JM: Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NeuroImage Clin 2014, 4:122-129.
  • [52]Edgar JC, Hanlon FM, Huang MX, Weisend MP, Thoma RJ, Carpenter B, Hoechstetter K, Canive JM, Miller GA: Superior temporal gyrus spectral abnormalities in schizophrenia. Psychophysiology 2008, 45(5):812-824.
  • [53]Jansen BH, Hegde A, Boutros NN: Contribution of different EEG frequencies to auditory evoked potential abnormalities in schizophrenia. Clin Neurophysiol 2004, 115(3):523-533.
  • [54]Johannesen JK, Kieffaber PD, O’Donnell BF, Shekhar A, Evans JD, Hetrick WP: Contributions of subtype and spectral frequency analyses to the study of P50 ERP amplitude and suppression in schizophrenia. Schizophr Res 2005, 78(2–3):269-284.
  • [55]Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W: The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res 2008, 99(1–3):225-237.
  • [56]Gattaz WF, Mayer S, Ziegler P, Platz M, Gasser T: Hypofrontality on topographic EEG in schizophrenia: correlations with neuropsychological and psychopathological parameters. Eur Arch Psychiatry Clin Neurosci 1992, 241(6):328-332.
  • [57]Ramos J, Cerdan LF, Guevara MA, Amezcua C, Sanz A: Abnormal EEG patterns in treatment-resistant schizophrenic patients. Int J Neurosci 2001, 109(1–2):47-59.
  • [58]Whitfield-Gabrieli S, Ford JM: Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 2012, 8:49-76.
  • [59]Woodward ND, Rogers B, Heckers S: Functional resting-state networks are differentially affected in schizophrenia. Schizophr Res 2011, 130(1–3):86-93.
  • [60]Jang JH, Jung WH, Choi JS, Choi CH, Kang DH, Shin NY, Hong KS, Kwon JS: Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia. Schizophr Res 2011, 127(1–3):58-65.
  • [61]Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, Pearlson G: Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiatry 2010, 68(1):61-69.
  • [62]Rutter L, Nadar SR, Holroyd T, Carver FW, Apud J, Weinberger DR, Coppola R: Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks. Front Comput Neurosci 2013, 7:93.
  • [63]Fujimoto T, Okumura E, Takeuchi K, Kodabashi A, Otsubo T, Nakamura K, Kamiya S, Higashi Y, Yuji T, Honda K, Shimooki S, Tamura T: Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia. Open Neuroimaging J 2013, 7:15-26.
  • [64]Ko AL, Weaver KE, Hakimian S, Ojemann JG: Identifying functional networks using endogenous connectivity in gamma band electrocorticography. Brain Connect 2013, 3(5):491-502.
  • [65]Doesburg SM, Vinette SA, Cheung MJ, Pang EW: Theta-modulated gamma-band synchronization among activated regions during a verb generation task. Front Psychol 2012, 3:195.
  • [66]Gandal MJ, Edgar JC, Klook K, Siegel SJ: Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 2012, 62(3):1504-1518.
  • [67]Rutter L, Carver FW, Holroyd T, Nadar SR, Mitchell-Francis J, Apud J, Weinberger DR, Coppola R: Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Hum Brain Mapp 2009, 30(10):3254-3264.
  • [68]Hanslmayr S, Spitzer B, Bauml KH: Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb Cortex 2009, 19(7):1631-1640.
  • [69]Onton J, Delorme A, Makeig S: Frontal midline EEG dynamics during working memory. Neuroimage 2005, 27(2):341-356.
  • [70]Jokisch D, Jensen O: Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 2007, 27(12):3244-3251.
  • [71]Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC: Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 2009, 44(3):1224-1238.
  • [72]White TP, Jansen M, Doege K, Mullinger KJ, Park SB, Liddle EB, Gowland PA, Francis ST, Bowtell R, Liddle PF: Theta power during encoding predicts subsequent-memory performance and default mode network deactivation. Hum Brain Mapp 2013, 34(11):2929-2943.
  • [73]Thompson JL, Rosell DR, Slifstein M, Girgis RR, Xu X, Ehrlich Y, Kegeles LS, Hazlett EA, Abi-Dargham A, Siever LJ: Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [C]NNC112. Psychopharmacology (Berl) 2014. in press, doi:10.1007/s00213-014-3566-6
  • [74]Abbott CC, Kim D II, Sponheim SR, Bustillo J, Calhoun VD: Decreased default mode neural modulation with age in schizophrenia. Am J Geriatr Psychiatry 2010, 18(10):897-907.
  • [75]Ossandon T, Jerbi K, Vidal JR, Bayle DJ, Henaff MA, Jung J, Minotti L, Bertrand O, Kahane P, Lachaux JP: Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J Neurosci 2011, 31(41):14521-14530.
  • [76]Abbott C, Juarez M, White T, Gollub RL, Pearlson GD, Bustillo J, Lauriello J, Ho B, Bockholt HJ, Clark VP, Magnotta V, Calhoun VD: Antipsychotic dose and diminished neural modulation: a multi-site fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35(2):473-482.
  文献评价指标  
  下载次数:36次 浏览次数:24次