期刊论文详细信息
BMC Genetics
Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.)
John W Forster2  German C Spangenberg2  Noel OI Cogan1  Hiroshi Shinozuka1 
[1] Dairy Futures Cooperative Research Centre, Bundoora, Australia;La Trobe University, Bundoora, Victoria 3086, Australia
关键词: Molecular breeding;    Genetic map;    Comparative genetics;    BioMercator software;    Pasture grass;    Quantitative variation;   
Others  :  1089672
DOI  :  10.1186/1471-2156-13-101
 received in 2012-07-17, accepted in 2012-11-04,  发布年份 2012
PDF
【 摘 要 】

Background

In crop species, QTL analysis is commonly used for identification of factors contributing to variation of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is, however, essential for utilisation in varietal improvement programs.

Results

A bibliographic survey of perennial ryegrass trait-dissection studies identified a total of 560 QTLs from previously published papers, of which 189, 270 and 101 were classified as morphology-, physiology- and resistance/tolerance-related loci, respectively. The collected dataset permitted a subsequent meta-QTL study and implementation of a cross-species candidate gene identification approach. A meta-QTL analysis based on use of the BioMercator software was performed to identify two consensus regions for pathogen resistance traits. Genes that are candidates for causal polymorphism underpinning perennial ryegrass QTLs were identified through in silico comparative mapping using rice databases, and 7 genes were assigned to the p150/112 reference map. Markers linked to the LpDGL1, LpPh1 and LpPIPK1 genes were located close to plant size, leaf extension time and heading date-related QTLs, respectively, suggesting that these genes may be functionally associated with important agronomic traits in perennial ryegrass.

Conclusions

Functional markers are valuable for QTL meta-analysis and comparative genomics. Enrichment of such genetic markers may permit further detailed characterisation of QTLs. The outcomes of QTL meta-analysis and comparative genomics studies may be useful for accelerated development of novel perennial ryegrass cultivars with desirable traits.

【 授权许可】

   
2012 Shinozuka et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150127010946886.pdf 542KB PDF download
Figure 3. 71KB Image download
Figure 2. 68KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Hannaway D, Fransen S, Cropper J, Teel M, Chaney M, Griggs T, Halse R, Hart J, Cheeke P, Hansen D, Klinger R, Lane W: Perennial ryegrass (Lolium perenne L.). Corvallis, Oregon: Oregon State University Extension Publication; 1999. [Oregon State University Extension Publication PNW503]
  • [2]Pearson A, Cogan NO, Baillie RC, Hand ML, Bandaranayake CK, Erb S, Wang J, Kearney GA, Gendall AR, Smith KF, Forster JW: Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 2011, 122(3):609-622.
  • [3]Wilkins PW: Breeding perennial ryegrass for agriculture. Euphytica 1991, 52:201-214.
  • [4]Devos KM, Gale MD: Comparative genetics in the grasses. Plant Mol Biol 1997, 35(1–2):3-15.
  • [5]International, Brachypodium, Initiative: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463(7282):763-768.
  • [6]Miura K, Ashikari M, Matsuoka M: The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 2011, 16(6):319-326.
  • [7]Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T, Yano M: Development of Isogenic Lines of Rice Cultivar Koshihikari with Early and Late Heading by Marker-assisted Selection. Breed Sci 2006, 56(4):405-413.
  • [8]Collard BC, Mackill DJ: Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2008, 363(1491):557-572.
  • [9]Takeuchi Y: Developing isogenic lines of Japanese rice cultivar ‘Koshihikari’ with early and late heading. JARQ 2011, 45(1):15-22.
  • [10]Ritter E, Gebhardt C, Salamini F: Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 1990, 125(3):645-654.
  • [11]Jones S, Dupal P, Dumsday L, Hughes J, Forster W: An SSR-based genetic linkage map for perennial ryegrass ( Lolium perenne L.). Theor Appl Genet 2002, 105(4):577-584.
  • [12]Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW: An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 2002, 45(2):282-295.
  • [13]Yamada T, Jones ES, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW: QTL analysis of morphological, developmental and winter hardiness-associated traits in perennial ryegrass (Lolium perenne L.). Crop Sci 2004, 44:925-935.
  • [14]Cogan NO, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW: QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 2005, 110(2):364-380.
  • [15]Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D: Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 2008, 178(3):559-571.
  • [16]Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW: Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 2004, 110(1):12-32.
  • [17]Dracatos PM, Cogan NO, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW: Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 2008, 117(2):203-219.
  • [18]Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lubberstedt T: QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 2005, 110(3):527-536.
  • [19]Anhalt UC, Heslop-Harrison PJ, Byrne S, Guillard A, Barth S: Segregation distortion in Lolium: evidence for genetic effects. Theor Appl Genet 2008, 117(2):297-306.
  • [20]Anhalt UCM, Heslop-Harrison JS, Piepho HP, Byrne S, Barth S: Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F2 population. Euphytica 2009, 170:99-107.
  • [21]Goffinet B, Gerber S: Quantitative trait loci: a meta-analysis. Genetics 2000, 155(1):463-473.
  • [22]Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, J J: BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 2004, 20(14):2324-2326.
  • [23]Khowaja FS, Norton GJ, Courtois B, Price AH: Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 2009, 10:276.
  • [24]Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A: Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 2010, 52(11):996-1007.
  • [25]Zhao-ming Q, Ya-nan S, Qiong W, Chun-yan L, Guo-hua H, Qing-shan C: A meta-analysis of seed protein concentration QTL in soybean. Can J Plant Sci 2011, 91(1):221-230.
  • [26]Swamy BP, Vikram P, Dixit S, Ahmed HU, Kumar A: Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 2011, 12:319.
  • [27]Paterson AH, Freeling M, Sasaki T: Grains of knowledge: genomics of model cereals. Genome Res 2005, 15(12):1643-1650.
  • [28]Armstead IP, Skot L, Turner LB, Skot K, Donnison IS, Humphreys MO, King IP: Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 2005, 167(1):239-247.
  • [29]Armstead IP, Turner LB, Farrell M, Skot L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO: Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 2004, 108(5):822-828.
  • [30]Shinozuka H, Cogan NO, Spangenberg GC, Forster JW: Comparative Genomics in Perennial Ryegrass (Lolium perenne L.): Identification and Characterisation of an Orthologue for the Rice Plant Architecture-Controlling Gene OsABCG5. Int J Plant Genomics 2011, 291563.
  • [31]Shinozuka H, Cogan NO, Smith KF, Spangenberg GC, Forster JW: Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 2010, 72(3):343-355.
  • [32]Barre P, Moreau L, Mi F, Turner L, Gastal F, Julier B, Ghesquière M: Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.). Grass and Forage Science 2009, 64:310-321.
  • [33]Brown RN, Barker RE, Warnke SE, Cooper LD, Brilman LA, Rouf Mian MA, Jung G, Sim S-C: Identification of quantitative trait loci for seed traits and floral morphology in a field-grown Lolium perenne × Lolium multiflorum mapping population. Plant Breeding 2010, 129:29-34.
  • [34]Curley J, Sim SC, Warnke S, Leong S, Barker R, Jung G: QTL mapping of resistance to gray leaf spot in ryegrass. Theor Appl Genet 2005, 111(6):1107-1117.
  • [35]Koulman A, Cao M, Faville M, Lane G, Mace W, Rasmussen S: Semi-quantitative and structural metabolic phenotyping by direct infusion ion trap mass spectrometry and its application in genetical metabolomics. Rapid Commun Mass Spectrom 2009, 23(15):2253-2263.
  • [36]Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldan-Ruiz I: Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity (Edinb) 2005, 95(5):348-357.
  • [37]Pfender WF, Saha MC, Johnson EA, Slabaugh MB: Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 2011, 122(8):1467-1480.
  • [38]Sartie AM, Matthew C, Easton HS, Faville MJ: Phenotypic and QTL analyses of herbage production-related traits in perennial ryegrass (Lolium perenne L.). Euphytica 2011, 182(3):295-315.
  • [39]Schejbel B, Jensen LB, Xing Y, Lubberstedt T: QTL analysis of crown rust resistance in perennial ryegrass under conditions of natural and artificial infection. Plant breeding = Zeitschrift fur Pflanzenzuchtung 2007, 126(4):347-352.
  • [40]Schejbel B, Jensen LB, Xing Y, Lubberstedt T: Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass. Plant breeding 2008, 127(4):368-375.
  • [41]Sim S, Diesburg K, Casler M, Jung G: Mapping and Comparative Analysis of QTL for Crown Rust Resistance in an Italian x Perennial Ryegrass Population. Phytopathology 2007, 97(6):767-776.
  • [42]Studer B, Jensen LB, Hentrup S, Brazauskas G, Kolliker R, Lubberstedt T: Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 2008, 117(5):781-791.
  • [43]Turner LB, Cairns AJ, Armstead IP, Ashton J, Skot K, Whittaker D, Humphreys MO: Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. New Phytol 2006, 169(1):45-57.
  • [44]Turner LB, Cairns AJ, Armstead IP, Thomas H, Humphreys MW, Humphreys MO: Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol 2008, 179(3):765-775.
  • [45]Xiong Y, Fei S, Arora R, Brummer EC, Baker RE, Jung G, Warnke SE: Identification of quantitative trait loci controlling winter hardiness in an annual perennial ryegrass interspecific hybrid population. Mol Breeding 2007, 19:125-136.
  • [46]Xiong Y, Fei S, Brummer EC, Moore KJ, Baker RE, Jung G, Curley J, Warnke SE: QTL analyses of fiber components and crude protein in an annual x perennial ryegrass interspecific hybrid population. Mol Breeding 2006, 18:327-340.
  • [47]Bian XY, Friedrich A, Bai JR, Baumann U, Hayman DL, Barker SJ, Langridge P: High-resolution mapping of the S and Z loci of Phalaris coerulescens. Genome 2004, 47(5):918-930.
  • [48]J-i Y, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M: Q-TARO: QTL Annotation Rice Online Database. Rice 2010, 3(2):194-203.
  • [49]Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucl Acids Res 2007, 35(suppl 2):W43-W46.
  • [50]Van Ooijen JW, Voorrips RE: JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen; 2001.
  • [51]Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C: EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 2006, 47(2):181-191.
  • [52]Yamada T, Matsuda F, Kasai K, Fukuoka S, Kitamura K, Tozawa Y, Miyagawa H, Wakasa K: Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell 2008, 20(5):1316-1329.
  • [53]Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M: Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 2001, 98(15):8909-8914.
  • [54]Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M, Sazuka T: Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiol 2005, 138(4):1982-1993.
  • [55]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M: Loss-of-function of a Rice Gibberellin Biosynthetic Gene, GA20 oxidase (GA20ox-2), Led to the Rice ‘Green Revolution’. Breed Sci 2002, 52:143-150.
  • [56]Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y: Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1. Theor Appl Genet 2011, 123(5):705-714.
  • [57]Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q: The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 2007, 177(3):1871-1880.
  • [58]Ma H, Xu SP, Luo D, Xu ZH, Xue HW: OsPIPK 1, a rice phosphatidylinositol monophosphate kinase, regulates rice heading by modifying the expression of floral induction genes. Plant Mol Biol 2004, 54(2):295-310.
  • [59]Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T: The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 1999, 19(1):55-64.
  • [60]Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J: Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 2005, 46(1):79-86.
  • [61]Yano M, Sasaki T: Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 1997, 35(1–2):145-153.
  • [62]Asíns MJ: Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 2002, 121:281-291.
  • [63]Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A: Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 2002, 162(4):1945-1959.
  • [64]Openshaw S, Frascaroli E: QTL detection and marker-assisted selection for complex traits. In Proceedings of the 52nd Annual Corn and Sorghum Industry Research Conference: 1997; Washington. American Seed Trade Association, D.C.; 1997:44-53.
  • [65]Beavis WD: The power and deceit of QTL experiments: lessons from comparative QTL studies. American Seed Trade Association, Chicago; 1994:250-266. [the Proceedings of the Forty-Ninth Annual Corn and Sorghum Industry Research Conference: 1994]
  • [66]Beavis WD: QTL analyses: power, precision and accuracy. In Molecular Dissection of Complex Traits. Edited by A.H P. CRC Press, New York; 1997.
  • [67]Xu S: Theoretical basis of the Beavis effect. Genetics 2003, 165(4):2259-2268.
  • [68]Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B: Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 2010, 42(11):961-967.
  • [69]Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lubberstedt T, Asp T: A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics 2012, 13:140.
  • [70]Andersen JR, Lubberstedt T: Functional markers in plants. Trends Plant Sci 2003, 8(11):554-560.
  • [71]Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR: Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 2003, 107(3):479-493.
  • [72]Price AH: Believe it or not, QTLs are accurate! Trends Plant Sci 2006, 11(5):213-216.
  • [73]Ratnaparkhe MB, Wang X, Li J, Compton RO, Rainville LK, Lemke C, Kim C, Tang H, Paterson AH: Comparative analysis of peanut NBS-LRR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. New Phytol 2011, 192(1):164-178.
  • [74]Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen JQ: Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics 2011, 285(1):79-90.
  文献评价指标  
  下载次数:19次 浏览次数:8次