期刊论文详细信息
BMC Neuroscience
White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude
Ryan C N D’Arcy2  Steven D Beyea4  M Tynan Stevens1  Leanne M Fraser3 
[1] Department of Physics and Atmospheric Sciences, Dalhousie University, Halifax, Canada;Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Canada;Department of Psychology/Neuroscience, Dalhousie University, Halifax, Canada;School of Biomedical Engineering, Dalhousie University, Halifax, Canada
关键词: Interhemispheric transfer;    Event-related fMRI;    Hemodynamic response function;    BOLD response;    Functional connectivity;    White matter;   
Others  :  1170604
DOI  :  10.1186/1471-2202-13-91
 received in 2012-04-02, accepted in 2012-07-17,  发布年份 2012
PDF
【 摘 要 】

Background

There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation.

Results

Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes.

Conclusions

Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T.

【 授权许可】

   
2012 Fraser et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417022629733.pdf 1031KB PDF download
Figure 3 . 89KB Image download
Figure 2 . 38KB Image download
Figure 1 . 40KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

【 参考文献 】
  • [1]Black SE: Imagining white matter and the burden of small vessel disease [abstract]. Brain Cogn 2007, 63:191-196.
  • [2]Helenius J, Perkio J, Soinne L, Ostergaard L, Carano RA, Salonen O, Savolainen S, Kaste M, Aronen HJ, Tatlisumak T: Cerebral hemodynamics in a healthy population measured by dynamic susceptibility contrast MR imaging. Acta Radiol 2003, 44:538-546.
  • [3]Preibisch C, Haase A: Perfusion imaging using spin-labeling methods: Contrast to noise comparison in functional MRI applications. Magn Reson Med 2001, 46:172-182.
  • [4]Rostrup E, Law I, Blinkenburg M, Larsson HBW, Born AP, Holm S, Paulson OB: Regional differences in the CBF and BOLD response to hypercapnia: a combined PET and fMRI study. Neuroimage 2000, 11:87-97.
  • [5]Logothetis MK, Pauls J, Augath M, Trinath T, Oeltermann A: Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412:150-157.
  • [6]D’Arcy RCN, Hamilton A, Jarmasz M, Sullivan S, Stroink G: Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging. Magn Reson Med 2006, 55:952-958.
  • [7]Gawryluk JR, Brewer JD, Beyea SD, D’Arcy RCN: Optimizing the detection of white matter fMRI using asymmetric spin echo spiral. Neuroimage 2009, 45:83-88.
  • [8]Gawryluk JR, D’Arcy RCN, Mazerolle EL, Brewer JD, Beyea SD: Functional mapping in the corpus callosum: A 4 T fMRI study of white matter. Neuroimage 2011, 54:10-15.
  • [9]Mazerolle EL, D'Arcy RCN, Beyea SD: Detecting fMRI activation in white matter: interhemispheric transfer across the corpus callosum. BMC Neurosci 2008, 9:84. BioMed Central Full Text
  • [10]Mazerolle EL, Beyea SD, Gawryluk JR, Brewer JD, Bowen CV, D’Arcy RCN: Confirming white matter fMRI activation in the corpus callosum: Co-localization with DTI tractography. Neuroimage 2010, 50:616-621.
  • [11]Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA: Interhemispehric transfer of visuomotor information in humans: fMRI evidence. J Neurophysiol 2002, 88:1051-1058.
  • [12]Yarkoni T, Barch DM, Gray JR, Conturo TE, Braver TS: BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS One 2009, 4:e4257.
  • [13]Brewer KD, Rioux JA, D'Arcy RCN, Bowen CV, Beyea SD: Asymmetric spin-echo (ASE) spiral improves BOLD fMRI in inhomogeneous regions. NMR Biomed 2009, 22:654-662.
  • [14]Witelson SF: Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 1989, 112:799-835.
  • [15]Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM: Functional anatomy of interhemispheric cortical connections in the human brain. J Anat 2006, 209:311-320.
  • [16]Calhoun VD, Liu J, Adali T: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 2009, 45:S163-S172.
  • [17]Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL: Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Hum Brain Mapp 2008, 29:142-156.
  • [18]Lindquist MA, Wager TD: Validity and power in hemodynamic response modeling: A comparison study and a new approach. Hum Brain Mapp 2007, 28:764-784.
  • [19]Jenkinson M, Bannister P, Brady M, Smith S: Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17:825-841.
  • [20]Smith S: Fast robust automated brain extraction. Hum Brain Mapp 2002, 17:143-155.
  • [21]Woolrich MW, Ripley BD, Brady JM, Smith SM: Temporal autocorrelation in univariate linear modelling of fMRI data. Neuroimage 2001, 14:1370-1386.
  • [22]Worsley KJ, Evans AC, Marrett S, Neelin P: A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 1992, 12:900-918.
  • [23]Jenkinson M, Smith SM: A global optimisation method for robust affine registration of brain images. Med Image Anal 2001, 5:143-156.
  • [24]Cox R, Hyde J: Software tools for analysis and visualization of fMRI data. NMR Biomed 1997, 10:171-178.
  文献评价指标  
  下载次数:101次 浏览次数:61次