期刊论文详细信息
BMC Evolutionary Biology
Massive expansion of the calpain gene family in unicellular eukaryotes
Kamran Shalchian-Tabrizi2  Odd-Arne Olsen3  Wenche Johansen3  Robert Wilson3  Viktor Demko1  Zhe Liang1  Sen Zhao2 
[1] Norwegian University of Life Sciences, Ås, N-1432, Norway;Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, OSLO, N-0136, Norway;Hedmark University College, Hamar, N-2306, Norway
关键词: Protist;    Gene family phylogeny;    Evolution;    Unicellular eukaryote;    CysPc domain;    Calpain;   
Others  :  1140235
DOI  :  10.1186/1471-2148-12-193
 received in 2012-05-15, accepted in 2012-09-24,  发布年份 2012
PDF
【 摘 要 】

Background

Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life.

Results

Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain.

Conclusions

The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

【 授权许可】

   
2012 Zhao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324153909366.pdf 952KB PDF download
Figure 3. 72KB Image download
Figure 2. 129KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Goll DE, Thompson VF, Li H, Wei W, Cong J: The calpain system. Physiol Rev 2003, 83(3):731-801.
  • [2]Croall DE, Ersfeld K: The calpains: modular designs and functional diversity. Genome Biol 2007, 8(6):218. BioMed Central Full Text
  • [3]Ono Y, Sorimachi H: Calpains: an elaborate proteolytic system. Biochim Biophys Acta 2011, 1824(1):224-236.
  • [4]Huang Y, Wang KK: The calpain family and human disease. Trends Mol Med 2001, 7(8):355-362.
  • [5]Branca D: Calpain-related diseases. Biochem Biophys Res Commun 2004, 322(4):1098-1104.
  • [6]Bertipaglia I, Carafoli E: Calpains and human disease. Subcell Biochem 2007, 45:29-53.
  • [7]Zadran S, Bi X, Baudry M: Regulation of calpain-2 in neurons: implications for synaptic plasticity. Mol Neurobiol 2010, 42(2):143-150.
  • [8]Futai E, Sorimachi H, Jeong SY, Kitamoto K, Ishiura S, Suzuki K: Aspergillus oryzae palBory encodes a calpain-like protease: homology to Emericella nidulans PalB and conservation of functional regions. J Biosci Bioeng 1999, 88(4):438-440.
  • [9]Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H: The Ca2 + −dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009, 126(8–9):737-751.
  • [10]Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA: The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 2002, 99(8):5460-5465.
  • [11]Wang C, Barry JK, Min Z, Tordsen G, Rao AG, Olsen OA: The calpain domain of the maize DEK1 protein contains the conserved catalytic triad and functions as a cysteine proteinase. J Biol Chem 2003, 278(36):34467-34474.
  • [12]Tian Q, Olsen L, Sun B, Lid SE, Brown RC, Lemmon BE, Fosnes K, Gruis DF, Opsahl-Sorteberg HG, Otegui MS, et al.: Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 2007, 19(10):3127-3145.
  • [13]Macqueen DJ, Delbridge ML, Manthri S, Johnston IA: A newly classified vertebrate calpain protease, directly ancestral to CAPN1 and 2, episodically evolved a restricted physiological function in placental mammals. Mol Biol Evol 2010, 27(8):1886-1902.
  • [14]Berti PJ, Storer AC: Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 1995, 246(2):273-283.
  • [15]Hosfield CM, Ye Q, Arthur JS, Hegadorn C, Croall DE, Elce JS, Jia Z: Crystallization and X-ray crystallographic analysis of m-calpain, a Ca2 + −dependent protease. Acta Crystallogr D: Biol Crystallogr 1999, 55(Pt 8):1484-1486.
  • [16]Spadoni C, Farkas A, Sinka R, Tompa P, Friedrich P: Molecular cloning and RNA expression of a novel Drosophila calpain, Calpain C. Biochem Biophys Res Commun 2003, 303(1):343-349.
  • [17]Friedrich P, Tompa P, Farkas A: The calpain-system of Drosophila melanogaster: coming of age. BioEssays 2004, 26(10):1088-1096.
  • [18]Sorimachi H, Hata S, Ono Y: Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 2010, 59(5):549-566.
  • [19]Forslund K, Henricson A, Hollich V, Sonnhammer EL: Domain tree-based analysis of protein architecture evolution. Mol Biol Evol 2008, 25(2):254-264.
  • [20]Jekely G, Friedrich P: The evolution of the calpain family as reflected in paralogous chromosome regions. J Mol Evol 1999, 49(2):272-281.
  • [21]Maki M, Maemoto Y, Osako Y, Shibata H: Evolutionary and physical linkage between calpains and penta-EF-hand Ca(2+) -binding proteins. FEBS J 2012, 279(8):1414-1421.
  • [22]Ersfeld K, Barraclough H, Gull K: Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J Mol Evol 2005, 61(6):742-757.
  • [23]Russo I, Oksman A, Vaupel B, Goldberg DE: A calpain unique to alveolates is essential in Plasmodium falciparum and its knockdown reveals an involvement in pre-S-phase development. Proc Natl Acad Sci USA 2009, 106(5):1554-1559.
  • [24]Sogin ML: Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1991, 1(4):457-463.
  • [25]Simpson AG, Inagaki Y, Roger AJ: Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Mol Biol Evol 2006, 23(3):615-625.
  • [26]Burki F, Inagaki Y, Bråte J, Archibald JM, Keeling P, Cavalier-Smith T, Sakaguchi M, Hashimoto T, Horak A, Kumar S, et al.: Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 2009, 1:231-238.
  • [27]Hampl V, Hug LA, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ: Phylogenetic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 2009, 106(10):3859-3864.
  • [28]Roger AJ, Simpson AG: Evolution: revisiting the root of the eukaryote tree. Curr Biol 2009, 19(4):R165-R167.
  • [29]Burki F, Shalchian-Tabrizi K, Pawlowski J: Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 2008, 4(4):366-369.
  • [30]Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2007, 2(8):e790.
  • [31]Torruella G, Derelle R, Paps J, Lang BF, Roger AJ, Shalchian-Tabrizi K, Ruiz-Trillo I: Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 2012, 29(2):531-544.
  • [32]Cavalier-Smith T, Chao EE: Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species. Protist 2010, 161(4):549-576.
  • [33]Zhao S, Burki F, Brate J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K: Collodictyon--an ancient lineage in the tree of eukaryotes. Mol Biol Evol 2012, 29(6):1557-1568.
  • [34]Richards TA, Cavalier-Smith T: Myosin domain evolution and the primary divergence of eukaryotes. Nature 2005, 436(7054):1113-1118.
  • [35]Cavalier-Smith T: Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 2010, 6(3):342-345.
  • [36]Nakayama S, Kretsinger RH: Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 1994, 23:473-507.
  • [37]Weiner J 3rd, Moore AD, Bornberg-Bauer E: Just how versatile are domains? BMC Evol Biol 2008, 8:285. BioMed Central Full Text
  • [38]Bjorklund AK, Ekman D, Light S, Frey-Skott J, Elofsson A: Domain rearrangements in protein evolution. J Mol Biol 2005, 353(4):911-923.
  • [39]Vogel C, Teichmann SA, Pereira-Leal J: The relationship between domain duplication and recombination. J Mol Biol 2005, 346(1):355-365.
  • [40]Tonami K, Kurihara Y, Aburatani H, Uchijima Y, Asano T, Kurihara H: Calpain 6 is involved in microtubule stabilization and cytoskeletal organization. Mol Cell Biol 2007, 27(7):2548-2561.
  • [41]Sorimachi H, Hata S, Ono Y: Calpain chronicle–an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci 2011, 87(6):287-327.
  • [42]Hosfield CM, Elce JS, Davies PL, Jia Z: Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J 1999, 18(24):6880-6889.
  • [43]Hata S, Sorimachi H, Nakagawa K, Maeda T, Abe K, Suzuki K: Domain II of m-calpain is a Ca(2+)-dependent cysteine protease. FEBS Lett 2001, 501(2–3):111-114.
  • [44]Moldoveanu T, Gehring K, Green DR: Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 2008, 456(7220):404-408.
  • [45]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [46]Huang X, Czerwinski E, Mellgren RL: Purification and properties of the Dictyostelium calpain-like protein, Cpl. Biochemistry 2003, 42(6):1789-1795.
  • [47]Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, et al.: CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 2003, 31(1):383-387.
  • [48]Letunic I, Doerks T, Bork P: SMART 6: recent updates and new developments. Nucleic Acids Res 2009, 37:D229-D232.
  • [49]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
  • [50]Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305(3):567-580.
  • [51]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [52]Maddison WP, Maddison DR: Interactive analysis of phylogeny and character evolution using the computer program MacClade. Folia Primatol (Basel) 1989, 53(1–4):190-202.
  • [53]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21(9):2104-2105.
  • [54]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [55]Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 2004, 21(6):1095-1109.
  文献评价指标  
  下载次数:38次 浏览次数:19次