期刊论文详细信息
BMC Microbiology
Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34
Nigel L Brown1  Daniel J Julian2  Jon L Hobman3 
[1] Present address: Senior Vice-Principal's Office, The University of Edinburgh, Charles Stewart House, 9-16 Chambers Street, Edinburgh, EH1 1HT, UK;School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK;Present address: School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
关键词: Bacterial gene expression;    Metalloregulation;    Metal-protein interactions;    Metal-resistance;   
Others  :  1221873
DOI  :  10.1186/1471-2180-12-109
 received in 2012-01-07, accepted in 2012-06-07,  发布年份 2012
PDF
【 摘 要 】

Background

The pbr resistance operon from Cupriavidus metallidurans CH34 plasmid pMOL30 confers resistance to Pb(II) salts, and is regulated by the Pb(II) responsive regulator PbrR, which is a MerR family activator. In other metal sensing MerR family regulators, such as MerR, CueR, and ZntR the cognate regulator binds to a promoter with an unusually long spacer between the −35 and −10 sequences, and activates transcription of resistance genes as a consequence of binding the appropriate metal. Cysteine residues in these regulators are essential for metal ion coordination and activation of expression from their cognate promoter. In this study we investigated the interaction of PbrR with the promoter for the structural pbr resistance genes, PpbrA, effects on transcriptional activation of altering the DNA sequence of PpbrA, and effects on Pb(II)-induced activation of PpbrA when cysteine residues in PbrR were mutated to serine.

Results

Gel retardation and footprinting assays using purified PbrR show that it binds to, and protects from DNase I digestion, the PpbrA promoter, which has a 19 bp spacer between its −35 and −10 sites. Using β-galactosidase assays in C. metallidurans, we show that when PpbrA is changed to an 18 bp spacer, there is an increase in transcriptional activation both in the presence and absence of Pb(II) salts up to a maximum induction equivalent to that seen in the fully-induced wild-type promoter. Changes to the −10 sequence of PpbrA from TTAAAT to the consensus E. coli −10 sequence (TATAAT) increased transcriptional activation from PpbrA, whilst changing the −10 sequence to that of the Tn501 mer promoter (TAAGGT) also increased the transcriptional response, but only in the presence of Pb(II). Individual PbrR mutants C14S, C55S, C79S, C114S, C123S, C132S and C134S, and a double mutant C132S/C134S, were tested for Pb(II) response from PpbrA, using β-galactosidase assays in C. metallidurans. The PbrR C14S, C79S, C134S, and C132S/C134S mutants were defective in Pb(II)-induced activation of PpbrA.

Conclusions

These data show that the metal-dependent activation of PbrR occurs by a similar mechanism to that of MerR, but that metal ion coordination is through cysteines which differ from those seen in other MerR family regulators, and that the DNA sequence of the −10 promoter affects expression levels of the lead resistance genes.

【 授权许可】

   
2012 Hobman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804060851573.pdf 679KB PDF download
Figure 5 . 76KB Image download
Figure 4 . 12KB Image download
Figure 3 . 69KB Image download
Figure 2 . 40KB Image download
Figure 1 . 42KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

【 参考文献 】
  • [1]Mire CE, Tourjee JA, O'Brien WF, Ramanujachary KV, Hecht GB: Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol 2004, 70:855-864.
  • [2]Rensing C, Sun Y, Mitra B, Rosen BP: Pb(II)-translocating P-type ATPases. J Biol Chem 1998, 49:32614-32617.
  • [3]Sharma R, Rensing C, Rosen BP, Mitra B: The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 2000, 275:3873-3878.
  • [4]Borremans B, Hobman JL, Provoost A, Corbisier P, Brown NL, van der Lelie D: Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 2001, 183:5651-5658.
  • [5]Hynninen A, Touzé T, Pitkänen L, Mengin-Lecreulx D, Virta M: An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 2009, 74:384-394.
  • [6]Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F: Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 1985, 162:328-334.
  • [7]Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T: Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 2006, 152:1765-1776.
  • [8]Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R: Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 2003, 27:385-410.
  • [9]Debut AJ, Dumay QC, Barabote RD, Saier MH: The iron/lead supertransporter family of Fe3+/Pb2+ uptake systems. J Mol Microbiol Biotechnol 2006, 11:1-9.
  • [10]Brown NL, Stoyanov JV, Kidd SP, Hobman JL: The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003, 27:145-163.
  • [11]Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M: Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximum viable response to heavy metals. J Bacteriol 2007, 189:7417-7425.
  • [12]Taghavi S, Lesaulnier C, Monchy S, Wattier R, Mergeay M, van der Lelie D: Lead (II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Anthonie van Leeuwenhoek 2009, 96:171-182.
  • [13]Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C: An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: Development of a fluorescent lead(II) probe. Angew Chem Int Ed 2005, 44:2715-2719.
  • [14]Chen PR, Wasinger EC, Zhao J, van der Lelie D, Chen LX, He C: Spectroscopic insights into lead (II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc 2007, 129:12350-12351.
  • [15]Julian DJ, Kershaw CJ, Brown NL, Hobman JL: Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Anthonie van Leeuwenhoek 2009, 96:149-159.
  • [16]Brocklehurst KR, Megit SJ, Morby AP: Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem Biophys Res Commun 2003, 308:234-239.
  • [17]Lee S-W, Glickman E, Cooksey D: Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 2001, 67:697-702.
  • [18]Outten FW, Outten CE, Hale J, O'Halloran TV: Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 2000, 275:31024-31029.
  • [19]Petersen C, Moller LB: Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 2000, 261:289-298.
  • [20]Stoyanov JV, Hobman JL, Brown NL: CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 2001, 39:502-511.
  • [21]Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR: ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium melliloti preventing low-pH induced copper toxicity. Mol Microbiol 2002, 43:981-991.
  • [22]Kim JS, Kim MH, Joe MH, Song SS, Lee IS, Choi SY: The SctR of Salmonella enterica serovar Typhimurium encoding a homologue of the MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett 2002, 210:99-103.
  • [23]Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP: ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 1999, 31:893-902.
  • [24]Outten CE, Outten FW, O'Halloran TV: DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 1999, 274:37517-37524.
  • [25]Kidd SP, Brown NL: ZccR- a MerR-like regulator from Bordetella pertussis, which responds to zinc, cadmium and cobalt. Biochem Biophys Res Comm 2003, 302:697-702.
  • [26]Checa SK, Espariz M, Perez Audero ME, Botta PE, Spinelli SV, Soncini FC: Bacterial sensing of and resistance to gold salts. Mol Microbiol 2007, 63:1307-1318.
  • [27]Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A: Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301:1383-1387.
  • [28]Helmann JD, Ballard BT, Walsh CT: The MerR Metalloregulatory Protein Binds Mercuric Ion as a Tricoordinate, Metal-Bridged Dimer. Science 1990, 248:946-948.
  • [29]Shewchuk LM, Verdine GL, Nash H, Walsh CT: Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription. Biochemistry 1989, 28:6140-6145.
  • [30]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1989.
  • [31]Gibson T: Studies on the Eppstein-Barr virus genome. University of Cambridge, Cambridge, U.K; 1984.
  • [32]Stanssens P, Opsomer C, McKeown YM, Kramer W, Zabeau M, Fritz HJ: Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nucleic Acid Res 1989, 17:4441-4454.
  • [33]Praszkier J, Wilson IW, Pittard AJ: Mutations affecting translational coupling between the rep genes of an IncB miniplasmid. J Bacteriol 1992, 174:2376-2383.
  • [34]Vieira J, Messing J: New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 1991, 100:189-194.
  • [35]Bradford MM: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [36]Parkhill J, Ansari AZ, Wright JG, Brown NL, O'Halloran TV: Construction and characterization of a mercury-independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. EMBO J 1993, 12:413-421.
  • [37]Savery N, Belyaeva T, Busby S: Protein-DNA interactions. In Essential Techniques: Gene Transcription. Edited by Docherty K. John Wiley and sons, Chichester; 1996:1-33.
  • [38]Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989, 77:51-59.
  • [39]Miller J: Experiments in Molecular Genetics. Cold spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1972.
  • [40]O’Halloran TV, Frantz B, Shin MK, Ralston DM, Wright JG: The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 1989, 56:119-129.
  • [41]Parkhill J, Brown NL: Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acid Res 1990, 18:5157-5162.
  • [42]Harley CB, Reynolds RP: Analysis of Escherichia coli promoter sequences. Nucleic Acid Res 1987, 15:2343-2361.
  • [43]Ansari AZ, Bradner JE, O'Halloran TV: DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 1995, 374:371-375.
  • [44]Ansari AZ, Chael ML, O'Halloran TV: Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 1995, 355:87-89.
  • [45]Ross W, Park S-J, Summers AO: Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. J Bacteriol 1989, 171:4009-4018.
  • [46]Shewchuk LM, Helmann JD, Ross W, Park S-J, Summers AO, Walsh CT: Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury (II) binding domains. Biochemistry 1989, 28:2340-2344.
  • [47]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: ClustalW and ClustalX version 2. Bioinformatics 2007, 23:2947-2948.
  • [48]Hobman JL, Wilkie J, Brown NL: A design for life: prokaryotic metal-binding MerR family regulators. Biometals 2005, 18:429-436.
  • [49]Sun Y, Wong MD, Rosen BP: Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. J Biol Chem 2001, 276:14955-14960.
  • [50]Apuy JL, Busenlehner LS, Russell DH, Giedroc DP: Ratiometric pulsed alkylation mass spectrometry as a probe of thiolate reactivity in different metalloderivatives of Staphylococcus aureus pI258 CadC. Biochemistry 2004, 43:3824-3834.
  • [51]Busenlehner LS, Weng T-C, Penner-Hahn JE, Giedroc DP: Elucidation of primary (α3N) and vestigial (α5) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. J Mol Biol 2002, 319:685-701.
  • [52]Magyar JS, Weng T-C, Stern CM, Dye DF, Rous BW, Payne JC, Bridgewater BM, Mijovilovich A, Parkin G, Zaleski JM, Penner-Hahn JE, Godwin HA: Reexamination of lead(II) coordination preferences in sulphur-rich sites: implications for a critical mechanism of lead poisoning. J Am Chem Soc 2005, 127:9495-9505.
  • [53]Anderson RJ, diTargiani RC, Hancock RD, Stern CL, Goldberg DP, Godwin HA: Characterization of the first N2S(alkylthiolate) lead compound: A model for three-coordinate lead in biological systems. Inorg Chem 2006, 45:6574-6576.
  • [54]Busenlehner LS, Pennella MA, Giedroc DP: The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 2003, 27:131-143.
  • [55]Permina EA, Kazakov AE, Kalinina OV, Gelfand MS: Comparative genomics of regulation of heavy metal resistance in eubacteria. BMC Microbiol 2006, 6:49.
  • [56]Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csoregi E, Johansson G, Mattiasson B: Whole cell and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 1999, 387:235-244.
  • [57]Khan S, Brocklehurst KR, Jones GW, Morby AP: The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli. Biochem Biophys Res Commun 2002, 299:438-445.
  文献评价指标  
  下载次数:104次 浏览次数:76次