期刊论文详细信息
BMC Genomics
Polysome profiling reveals broad translatome remodeling during endoplasmic reticulum (ER) stress in the pathogenic fungus Aspergillus fumigatus
David S Askew1  Long Jason Lu2  William C Nierman4  Liliana Losada4  Zhaowei Ren2  Karthik Krishnan3 
[1]Department of Pathology, University of Cincinnati, PO Box 670529, Cincinnati, OH 45267-0529, USA
[2]Division of Biomedical Informatics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH 45229, USA
[3]Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
[4]The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
关键词: Yvc1;    Polysome profiling;    Translational regulation;    ER stress;    Unfolded protein response;    UPR;    Aspergillus fumigatus;   
Others  :  1217837
DOI  :  10.1186/1471-2164-15-159
 received in 2013-10-17, accepted in 2014-02-17,  发布年份 2014
PDF
【 摘 要 】

Background

The unfolded protein response (UPR) is a network of intracellular signaling pathways that supports the ability of the secretory pathway to maintain a balance between the load of proteins entering the endoplasmic reticulum (ER) and the protein folding capacity of the ER lumen. Current evidence indicates that several pathogenic fungi rely heavily on this pathway for virulence, but there is limited understanding of the mechanisms involved. The best known functional output of the UPR is transcriptional upregulation of mRNAs involved in ER homeostasis. However, this does not take into account mechanisms of translational regulation that involve differential loading of ribosomes onto mRNAs. In this study, a global analysis of transcript-specific translational regulation was performed in the pathogenic mold Aspergillus fumigatus to determine the nature and scope of the translational response to ER stress.

Results

ER stress was induced by treating the fungus with dithiothreitol, tunicamycin, or a thermal up-shift. The mRNAs were then fractionated on the basis of ribosome occupancy into an under-translated pool (U) and a well-translated pool (W). The mRNAs were used to interrogate microarrays and the ratio of the hybridization signal (W/U) was used as an indicator of the relative translational efficiency of a mRNA under each condition. The largest category of translationally upregulated mRNAs during ER stress encoded proteins involved in translation. Components of the ergosterol and GPI anchor biosynthetic pathways also showed increased polysome association, suggesting an important role for translational regulation in membrane and cell wall homeostasis. ER stress induced limited remodeling of the secretory pathway translatome. However, a select group of transcription factors was translationally upregulated, providing a link to subsequent modification of the transcriptome. Finally, we provide evidence that one component of the ER stress translatome is a novel mRNA isoform from the yvc1 gene that is induced by ER stress in a UPR-dependent manner.

Conclusions

Together, these findings define a core set of mRNAs subject to translational control during the adaptive response to acute ER stress in A. fumigatus and reveal a remarkable breadth of functions that are needed to resolve ER stress in this organism.

【 授权许可】

   
2014 Krishnan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708151433832.pdf 1359KB PDF download
Figure 8. 120KB Image download
Figure 7. 62KB Image download
Figure 6. 56KB Image download
Figure 5. 76KB Image download
Figure 4. 49KB Image download
Figure 3. 101KB Image download
Figure 2. 50KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Shoham S, Marr KA: Invasive fungal infections in solid organ transplant recipients. Future Microbiol 2012, 7(5):639-655.
  • [2]Segal BH: Aspergillosis. N Engl J Med 2009, 360(18):1870-1884.
  • [3]Kim A, Nicolau DP, Kuti JL: Hospital costs and outcomes among intravenous antifungal therapies for patients with invasive Aspergillosis in the United States. Mycoses 2011, 54(5):e301-312.
  • [4]Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J: The direct cost and incidence of systemic fungal infections. Value Health 2002, 5(1):26-34.
  • [5]Lin SJ, Schranz J, Teutsch SM: Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 2001, 32(3):358-366.
  • [6]Feng X, Krishnan K, Richie DL, Aimanianda V, Hartl L, Grahl N, Powers-Fletcher MV, Zhang M, Fuller KK, Nierman WC, et al.: HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus. PLoS Pathog 2011, 7(10):e1002330.
  • [7]Richie DL, Hartl L, Aimanianda V, Winters MS, Fuller KK, Miley MD, White S, McCarthy JW, Latge JP, Feldmesser M, et al.: A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog 2009, 5(1):e1000258.
  • [8]Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA: Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog 2011, 7(8):e1002177.
  • [9]Joubert A, Simoneau P, Campion C, Bataille-Simoneau N, Iacomi-Vasilescu B, Poupard P, Francois JM, Georgeault S, Sellier E, Guillemette T: Impact of the unfolded protein response on the pathogenicity of the Neurotrophic fungus Alternaria brassicicola. Mol Microbiol 2011, 79(5):1305-1324.
  • [10]Miyazaki T, Nakayama H, Nagayoshi Y, Kakeya H, Kohno S: Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata. PLoS Pathog 2013, 9(1):e1003160.
  • [11]Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P: Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harbor Perspect Biol 2013, 5(3):a013169.
  • [12]Wimalasena TT, Enjalbert B, Guillemette T, Plumridge A, Budge S, Yin Z, Brown AJ, Archer DB: Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol 2008, 45(9):1235-1247.
  • [13]Hartmann T, Sasse C, Schedler A, Hasenberg M, Gunzer M, Krappmann S: Shaping the fungal adaptome–stress responses of Aspergillus fumigatus. Int J Med Microbiol 2011, 301(5):408-416.
  • [14]Kohno K: Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. J Biochem 2010, 147(1):27-33.
  • [15]Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K: A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 2004, 167(3):445-456.
  • [16]Gardner BM, Walter P: Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 2011, 333(6051):1891-1894.
  • [17]Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, Kohno K: Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol 2007, 179(1):75-86.
  • [18]Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P: On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci USA 2005, 102(52):18773-18784.
  • [19]Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P: The unfolded protein response signals through high-order assembly of Ire1. Nature 2009, 457(7230):687-693.
  • [20]Shamu CE, Walter P: Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 1996, 15(12):3028-3039.
  • [21]Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19(3):1720-1730.
  • [22]Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, Deciu C, Winzeler E, Yates JR 3rd: Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2003, 100(6):3107-3112.
  • [23]Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003, 4(9):117. BioMed Central Full Text
  • [24]Gebauer F, Hentze MW: Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004, 5(10):827-835.
  • [25]Halbeisen RE, Gerber AP: Stress-dependent coordination of transcriptome and translatome in yeast. PLoS Biol 2009, 7(5):e1000105.
  • [26]Beilharz TH, Preiss T: Translational profiling: the genome-wide measure of the nascent proteome. Brief Funct Genom Proteom 2004, 3(2):103-111.
  • [27]Payne T, Hanfrey C, Bishop AL, Michael AJ, Avery SV, Archer DB: Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae. FEBS Lett 2008, 582(4):503-509.
  • [28]Guillemette T, van Peij NN, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, Stam H, Archer DB: Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 2007, 8:158. BioMed Central Full Text
  • [29]Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ: ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 2005, 35(4):395-416.
  • [30]Harding HP, Zhang Y, Ron D: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397(6716):271-274.
  • [31]Korennykh A, Walter P: Structural basis of the unfolded protein response. Ann Rev Cell Dev Biol 2012, 28:251-277.
  • [32]Warner JR, McIntosh KB: How common are extraribosomal functions of ribosomal proteins? Mol Cell 2009, 34(1):3-11.
  • [33]Gastebois A, Clavaud C, Aimanianda V, Latge JP: Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol 2009, 4(5):583-595.
  • [34]Mo C, Bard M: Erg28p is a key protein in the yeast sterol biosynthetic enzyme complex. J Lipid Res 2005, 46(9):1991-1998.
  • [35]Lewis RE, Viale P, Kontoyiannis DP: The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida. Virulence 2012, 3(4):368-376.
  • [36]Hartland RP, Fontaine T, Debeaupuis JP, Simenel C, Delepierre M, Latge JP: A novel beta-(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J Biol Chem 1996, 271(43):26843-26849.
  • [37]Mouyna I, Morelle W, Vai M, Monod M, Lechenne B, Fontaine T, Beauvais A, Sarfati J, Prevost MC, Henry C, et al.: Deletion of GEL2 encoding for a beta(1-3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol Microbiol 2005, 56(6):1675-1688.
  • [38]Li H, Zhou H, Luo Y, Ouyang H, Hu H, Jin C: Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol 2007, 64(4):1014-1027.
  • [39]Gastebois A, Fontaine T, Latge JP, Mouyna I: beta(1-3)Glucanosyltransferase Gel4p is essential for Aspergillus fumigatus. Eukaryot Cell 2010, 9(8):1294-1298.
  • [40]Hata K, Horii T, Miyazaki M, Watanabe NA, Okubo M, Sonoda J, Nakamoto K, Tanaka K, Shirotori S, Murai N, et al.: Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, Aspergillosis, and fusariosis. Antimicrob Agents Chemother 2011, 55(10):4543-4551.
  • [41]Miyazaki M, Horii T, Hata K, Watanabe NA, Nakamoto K, Tanaka K, Shirotori S, Murai N, Inoue S, Matsukura M, et al.: In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 2011, 55(10):4652-4658.
  • [42]McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S: Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 2012, 7(9):1520-1528.
  • [43]Bhabhra R, Askew DS: Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Med Mycol 2005, 43(Suppl 1):S87-S93.
  • [44]Matsumoto R, Akama K, Rakwal R, Iwahashi H: The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics 2005, 6:141. BioMed Central Full Text
  • [45]Do JH, Yamaguchi R, Miyano S: Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics 2009, 10:306. BioMed Central Full Text
  • [46]Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, et al.: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005, 438(7071):1151-1156.
  • [47]Mulder HJ, Nikolaev I: HacA-dependent transcriptional switch releases hacA mRNA from a translational block upon endoplasmic reticulum stress. Eukaryot Cell 2009, 8(4):665-675.
  • [48]Ruegsegger U, Leber JH, Walter P: Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 2001, 107(1):103-114.
  • [49]Hooks KB, Griffiths-Jones S: Conserved RNA structures in the non-canonical Hac1/Xbp1 intron. RNA Biol 2011, 8(4):552-556.
  • [50]Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002, 415(6867):92-96.
  • [51]Mulder HJ, Saloheimo M, Penttila M, Madrid SM: The transcription factor HACA mediates the unfolded protein response in Aspergillus niger, and up-regulates its own transcription. Mol Genet Genomics 2004, 271(2):130-140.
  • [52]Saloheimo M, Valkonen M, Penttila M: Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 2003, 47(4):1149-1161.
  • [53]Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, Kohno K: Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol Cell 2009, 34(2):191-200.
  • [54]Denis V, Cyert MS: Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 2002, 156(1):29-34.
  • [55]Krappmann S, Sasse C, Braus GH: Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 2006, 5(1):212-215.
  • [56]Bhabhra R, Richie DL, Kim HS, Nierman WC, Fortwendel J, Aris JP, Rhodes JC, Askew DS: Impaired ribosome biogenesis disrupts the integration between morphogenesis and nuclear duplication during the germination of Aspergillus fumigatus. Eukaryot Cell 2008, 7(4):575-583.
  • [57]Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162(1):156-159.
  • [58]Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA: FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol 2011, 48(4):353-358.
  • [59]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95(25):14863-14868.
  • [60]Saldanha AJ: Java Treeview–extensible visualization of microarray data. Bioinformatics 2004, 20(17):3246-3248.
  • [61]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [62]Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013, 31(1):46-53.
  文献评价指标  
  下载次数:61次 浏览次数:41次