| BMC Microbiology | |
| Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus | |
| Volker F Wendisch2  Trygve Brautaset1  Jessica Stolzenberger2  Benno Markert2  | |
| [1] Department of Molecular Biology, SINTEF Materials and Chemistry, Sem Selands vei 2A, 7465, Trondheim, Norway;Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany | |
| 关键词: Thiamine pyrophosphate (THDP) dependent enzyme; Transketolase (TKT); Ribulose monophosphate (RuMP) pathway; Methylotrophy; Bacillus methanolicus; | |
| Others : 1090315 DOI : 10.1186/1471-2180-14-7 |
|
| received in 2013-10-13, accepted in 2014-01-07, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tktC) and one located on the natural occurring plasmid pBM19 (tktP).
Results
Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn2+ and Mg2+. Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni2+, ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKTC: kcat/KM: 264 s-1 mM-1; TKTP: kcat/KM: 231 s-1 mM) and ribulose 5-phosphate (TKTC: kcat/KM: 109 s-1 mM; TKTP: kcat/KM: 84 s-1 mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKTC: kcat/KM: 108 s-1 mM; TKTP: kcat/KM: 71 s-1 mM) and fructose 6-phosphate (TKTC kcat/KM: 115 s-1 mM; TKTP: kcat/KM: 448 s-1 mM).
Conclusions
Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tktP, but not of tktC during growth with methanol [J Bacteriol 188:3063–3072, 2006] argues for TKTP being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed.
【 授权许可】
2014 Markert et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150128160004464.pdf | 645KB | ||
| Figure 3. | 54KB | Image | |
| Figure 2. | 156KB | Image | |
| Figure 1. | 64KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Schenk G, Duggleby RG, Nixon PF: Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998, 30:1297-1318.
- [2]Zhao J, Zhong CJ: A review on research progress of transketolase. Neurosci Bull 2009, 25:94-99.
- [3]Breslow R, Appayee C: Transketolase reaction under credible prebiotic conditions. Proc Natl Acad Sci U S A 2013, 110:4184-4187.
- [4]Datta AG, Racker E: Mechanism of action of transketolase I Properties of the crystalline yeast enzyme. J Biol Chem 1961, 236:617-623.
- [5]Kochetov GA: Transketolase from yeast, rat liver, and pig liver. Methods Enzymol 1982, 90(Kochetov GA):E:209-223.
- [6]Kamada N, Yasuhara A, Takano Y, Nakano T, Ikeda M: Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 2001, 56:710-717.
- [7]Abe S, Takayarna K, Kinoshita S: Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 1967, 13:279-301.
- [8]Villafranca JJ, Axelrod B: Heptulose synthesis from nonphosphorylated aldoses and ketoses by spinach transketolase. J Biol Chem 1971, 246:3126-3131.
- [9]Masri SW, Ali M, Gubler CJ: Isolation of transketolase from rabbit liver and comparison of some of its kinetic properties with transketolase from other sources Comparative biochemistry and physiology. Comp Biochem Physiol B 1988, 90:167-172.
- [10]Blass JP, Piacentini S, Boldizsar E, Baker A: Kinetic studies of mouse brain transketolase. J Neurochem 1982, 39:729-733.
- [11]Mocali A, Paoletti F: Transketolase from human leukocytes Isolation, properties and induction of polyclonal antibodies. Eur J Biochem 1989, 180:213-219.
- [12]Sprenger GA, Schorken U, Sprenger G, Sahm H: Transketolase A of Escherichia coli K12 Purification and properties of the enzyme from recombinant strains. Eur J Biochem 1995, 230:525-532.
- [13]Kato N, Higuchi T, Sakazawa C, Nishizawa T, Tani Y, Yamada H: Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp) No 2201. Biochim Biophys Acta 1982, 715:143-150.
- [14]Ro YT, Eom CY, Song T, Cho JW, Kim YM: Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp strain JC1 DSM 3803. J Bacteriol 1997, 179:6041-6047.
- [15]Alves AM, Euverink GJ, Hektor HJ, Hessels GI, van der Vlag J, Vrijbloed JW, Hondmann D, Visser J, Dijkhuizen L: Enzymes of glucose and methanol metabolism in the actinomycete Amycolatopsis methanolica. J Bacteriol 1994, 176:6827-6835.
- [16]Nakagawa T, Fujimura S, Ito T, Matsufuji Y, Ozawa S, Miyaji T, Nakagawa J, Tomizuka N, Yurimoto H, Sakai Y, Hayakawa T: Molecular characterization of two genes with high similarity to the dihydroxyacetone synthase gene in the methylotrophic yeast Pichia methanolica. Biosci Biotechnol Biochem 2010, 74:1491-1493.
- [17]Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D, et al.: Bacillus methanolicus sp nov, a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Evol Microbiol 1992, 42:439-445.
- [18]Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J: Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 1997, 244:426-433.
- [19]Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS: L-lysine production at 50°C by mutants of a newly isolated and characterized methylotrophic Bacillus sp. Appl Environ Microbiol 1990, 56:963-970.
- [20]Brautaset T, Jakobsen OM, Flickinger MC, Valla S, Ellingsen TE: Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 2004, 186:1229-1238.
- [21]Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T: Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 2012, 78:5170-5181.
- [22]Jakobsen OM, Benichou A, Flickinger MC, Valla S, Ellingsen TE, Brautaset T: Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. J Bacteriol T E 2006, 188:3063-3072.
- [23]Krog A, Heggeset TM, Muller JE, Kupper CE, Schneider O, Vorholt JA, Ellingsen TE, Brautaset T: Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD(+) dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 2013, 8:e59188.
- [24]Anthony C: Bacterial oxidation of methane and methanol. Adv Microb Physiol 1986, 27:113-210.
- [25]de Vries GE, Arfman N, Terpstra P, Dijkhuizen L: Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J Bacteriol 1992, 174:5346-5353.
- [26]Stolzenberger J, Lindner SN, Wendisch VF: The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiol 2013, 159:1770-1781.
- [27]Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE: Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50°C. Appl Microbiol Biotechnol 2007, 74:22-34.
- [28]Stolzenberger J, Lindner SN, Persicke M, Brautaset T, Wendisch VF: Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 2013, 195:5112-5122.
- [29]Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC: Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants. Appl Environ Microbiol 2003, 69:3986-3995.
- [30]Iida A, Teshiba S, Mizobuchi K: Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12. J Bacteriol 1993, 175:5375-5383.
- [31]Zhao G, Winkler ME: An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth. J Bacteriol 1994, 176:6134-6138.
- [32]Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK: Molecular cloning and characterization of Plasmodium falciparum transketolase. Mol Biochem Parasitol 2008, 160:32-41.
- [33]Veitch NJ, Maugeri DA, Cazzulo JJ, Lindqvist Y, Barrett MP: Transketolase from Leishmania mexicana has a dual subcellular localization. Biochem J 2004, 382:759-767.
- [34]Stoffel SA, Alibu VP, Hubert J, Ebikeme C, Portais JC, Bringaud F, Schweingruber ME, Barrett MP: Transketolase in Trypanosoma brucei. Mol Biochem Parasitol 2011, 179:1-7.
- [35]Golbik R, Meshalkina LE, Sandalova T, Tittmann K, Fiedler E, Neef H, Konig S, Kluger R, Kochetov GA, Schneider G, Hubner G: Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae. FEBS J 2005, 272:1326-1342.
- [36]Hawkins CF, Borges A, Perham RN: A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 1989, 255:77-82.
- [37]Meshalkina L, Nilsson U, Wikner C, Kostikowa T, Schneider G: Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis. Eur J Biochem 1997, 244:646-652.
- [38]Abedinia M, Layfield R, Jones SM, Nixon PF, Mattick JS: Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase. Biochem Biophys Res Commun 1992, 183:1159-1166.
- [39]Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE: Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 2009, 75:652-661.
- [40]Kelley-Loughnane N, Biolsi SA, Gibson KM, Lu G, Hehir MJ, Phelan P, Kantrowitz ER: Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase. Biochim Biophys Acta 2002, 1594:6-16.
- [41]Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF: Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 2005, 71:5920-5928.
- [42]Haima P, van Sinderen D, Bron S, Venema G: An improved beta-galactosidase alpha-complementation system for molecular cloning in Bacillus subtilis. Gene 1990, 93:41-47.
- [43]Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE: Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50°C. Appl Microbiol Biotechnol 2010, 87:951-964.
- [44]Say RF, Fuchs G: Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 2010, 464:1077-1081.
- [45]Alexander-Kaufman K, Harper C: Transketolase: observations in alcohol-related brain damage research. Int J Biochem Cell Biol 2009, 41:717-720.
- [46]Kochetov G, Sevostyanova IA: Binding of the coenzyme and formation of the transketolase active center. IUBMB Life 2005, 57:491-497.
- [47]Bobst CE, Tabita FR: The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides. Arch Biochem Biophys 2004, 426:43-54.
- [48]Jung EH, Takeuchi T, Nishino K, Itokawa Y: Studies on the nature of thiamine pyrophosphate binding and dependency on divalent cations of transketolase from human erythrocytes. Int J Biochem 1988, 20:1255-1259.
- [49]Heinrich PC, Wiss O: Transketolase from human erythrocytes Purification and properties. Helv Chim Acta 1971, 54:2658-2668.
- [50]Kochetov GA: Transketolase: structure and mechanism of action. Biokhimiia 1986, 51:2010-2029.
- [51]Wikner C, Nilsson U, Meshalkina L, Udekwu C, Lindqvist Y, Schneider G: Identification of catalytically important residues in yeast transketolase. Biochemistry 1997, 36:15643-15649.
- [52]Schaaff-Gerstenschlager I, Mannhaupt G, Vetter I, Zimmermann FK, Feldmann H: TKL2, a second transketolase gene of Saccharomyces cerevisiae Cloning, sequence and deletion analysis of the gene. Eur J Biochem 1993, 217:487-492.
- [53]Schaaff-Gerstenschlager I, Zimmermann FK: Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase. Curr Genet 1993, 24:373-376.
- [54]Domain F, Bina XR, Levy SB: Transketolase A, an enzyme in central metabolism, derepresses the marRAB multiple antibiotic resistance operon of Escherichia coli by interaction with MarR. Mol Microbiol 2007, 66:383-394.
- [55]Usmanov RA, Kochetov GA: Function of the arginine residue in the active center of baker's yeast transketolase. Biokhimiia 1983, 48:772-781.
- [56]Usmanov RA, Kochetov GA: Interaction of baker's yeast transketolase modified by 2,3-butanedione with anionic and nonanionic substrates. Biochem Int 1983, 6:673-683.
- [57]Bystrykh LV, de Koning W, Harder W: Dihydroxyacetone synthase from Candida boidinii KD1. Methods Enzymol 1990, 188:435-445.
- [58]Esakova OA, Meshalkina LE, Golbik R, Hubner G, Kochetov GA: Donor substrate regulation of transketolase. Eur J Biochem 2004, 271:4189-4194.
- [59]Hanahan D: Techniques for transformation of E coli. In DNA cloning: a practical approach. Edited by Glover DM. Oxford, United Kingdom: IRL Press; 1985:109-135.
- [60]Sambrook J, Russell D: Molecular Cloning A Laboratory Manual. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratoy Press; 2001.
- [61]Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 1990, 185:60-89.
- [62]Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF: NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol 2007, 73:5026-5033.
- [63]Laemmli UK: Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 1970, 227:680.
- [64]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
PDF