期刊论文详细信息
BMC Gastroenterology
1HNMR-based metabolomic profile of rats with experimental acute pancreatitis
Wen-fu Tang2  Mei-hua Wan2  Yi-Ling Liu2  Hui Guo2  Shi-feng Zhu2  Xiao-hang Peng2  Yi-xia Liu1  Xian-lin Zhao2  Juan Li2 
[1]China Tibetology Research Center, 100101 Beijing, China
[2]Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
关键词: PLS-DA analysis;    PCA analysis;    1HNMR;    Acute pancreatitis;    Metabolomics;   
Others  :  854708
DOI  :  10.1186/1471-230X-14-115
 received in 2013-11-26, accepted in 2014-06-19,  发布年份 2014
PDF
【 摘 要 】

Background

Acute pancreatitis (AP) is a common inflammatory disease of the pancreas accompanied by serious metabolic disturbances. Nevertheless, the specific metabolic process of this disease is still unclear. Characterization of the metabolome may help identify biomarkers for AP. To identify potential biomarkers, this study therefore investigated the 1H-nuclear magnetic resonance (NMR)-based metabolomic profile of AP.

Methods

Fourteen male adult Sprague–Dawley rats were randomized into two groups: the AP group, in which AP was induced by retrograde ductal infusion of 3.5% sodium taurocholate; and the sham operation group (SO), in which rats were infused with 0.9% saline. Blood samples were obtained 12 hours later and a 600 MHz superconducting NMR spectrometer was used to detect plasma metabolites. Principal components analysis (PCA) and partial least squares-discriminant analysis after orthogonal signal correction (OSC-PLS-DA) were used to analyze both longitudinal Eddy-delay (LED) and Carr–Purcell–Meiboom–Gill (CPMG) spectra.

Results

Differences in plasma metabolites between the two groups were detected by PCA and PLS-DA of 1HNMR spectra. Compared with the SO group, plasma levels of lactate (δ 1.3, 1.34, 4.1), valine (δ 0.98, 1.02), succinic acid (δ 2.38), 3-hydroxybutyric acid (3-HB, δ 1.18), high density lipoprotein (HDL, δ 0.8), and unsaturated fatty acid (UFA, δ 2.78, 5.3) were elevated in the AP group, while levels of glycerol (δ 3.58, 3.66), choline (δ 3.22), trimethylamine oxide (TMAO, δ 3.26), glucose (δ 3–4), glycine (δ 3.54), very low density lipoprotein (VLDL, δ 1.34) and phosphatidylcholine (Ptd, δ 2.78) were decreased.

Conclusions

AP has a characteristic metabolic profile. Lactate, valine, succinic acid, 3-HB, HDL, UFA, glycerol, choline, TMAO, glucose, glycine, VLDL, and Ptd may be potential biomarkers of early stage AP.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722002558716.pdf 1239KB PDF download
73KB Image download
34KB Image download
75KB Image download
38KB Image download
【 图 表 】

【 参考文献 】
  • [1]Frossard JL, Steer ML, Pastor CM: Acute pancreatitis. Lancet 2008, 371(9607):143-152.
  • [2]van Santvoort HC, Bakker OJ, Bollen TL, Besselink MG, Ahmed Ali U, Schrijver AM, Boermeester MA, van Goor H, Dejong CH, van Eijck CH, van Ramshorst B, Schaapherder AF, van der Harst E, Hofker S, Nieuwenhuijs VB, Brink MA, Kruyt PM, Manusama ER, van der Schelling GP, Karsten T, Hesselink EJ, van Laarhoven CJ, Rosman C, Bosscha K, de Wit RJ, Houdijk AP, Cuesta MA, Wahab PJ, Gooszen HG, Dutch Pancreatitis Study Group: A conservative and minimally invasive approach to necrotizing pancreatitis improves outcome. Gastroenterology 2011, 141:1254-1263.
  • [3]Fagenholz PJ, Castillo CF, Harris NS, Pelletier AJ, Camargo CA Jr: Increasing United States hospital admissions for acute pancreatitis, 1988–2003. Ann Epidemiol 2007, 17:491-497.
  • [4]Lowenfels AB, Maisonneuve P, Sullivan T: The changing character of acute pancreatitis: epidemiology, etiology, and prognosis. Curr Gastroenterol Rep 2009, 11(2):97-103.
  • [5]Spanier BW, Dijkgraaf MG, Bruno MJ: Trends and forecasts of hospital admissions for acute and chronic pancreatitis in the Netherlands. Eur J Gastroenterol Hepatol 2008, 20(7):653-658.
  • [6]Roberts SE, Williams JG, Meddings D, Goldacre MJ: Incidence and case fatality for acute pancreatitis in England: geographical variation, social deprivation, alcohol consumption and aetiology–a record linkage study. Aliment Pharmacol Ther 2008, 28(7):931-941.
  • [7]Yadav D, Lowenfels AB: Trends in the epidemiology of the first attack of acute pancreatitis: a systematic review. Pancreas 2006, 33:323-330.
  • [8]Stimac D, Mikolasevic I, Krznaric-Zrnic I, Radic M, Milic S: Epidemiology of acute pancreatitis in the north adriatic region of Croatia during the last ten years. Gastroenterol Res Pract 2013. Epub 2013 Feb 14
  • [9]Shen HN, Lu CL, Li CY: Epidemiology of first-attack acute pancreatitis in Taiwan from 2000 through 2009: a nationwide population-based study. Pancreas 2012, 41(5):696-702.
  • [10]Wu BU, Conwell DL: Acute pancreatitis part I: approach to early management. Clin Gastroenterol Hepatol 2010, 8:410-416.
  • [11]Pandol SJ, Saluja AK, Imrie CW, Banks PA: Acute pancreatitis: bench to the bedside. Gastroenterology 2007, 132(3):1127-1151.
  • [12]Warndorf MG, Kurtzman JT, Bartel MJ, Cox M, Mackenzie T, Robinson S, Burchard PR, Gordon SR, Gardner TB: Early fluid resuscitation reduces morbidity among patients with acute pancreatitis. Clin Gastroenterol Hepatol 2011, 9(8):705-709.
  • [13]Fisher JM, Gardner TB: The “golden hours” of management in acute pancreatitis. Am J Gastroenterol 2012, 107(8):1146-1150.
  • [14]Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E: NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 2005, 18:143-162.
  • [15]Serkova NJ, Spratlin JL, Eckhardt SG: NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 2007, 9:572-585.
  • [16]Madsen R, Lundstedt T, Trygg J: Chemometrics in metabolomics–a review in human disease diagnosis. Anal Chim Acta 2010, 659(1–2):23-33.
  • [17]Desmoulin F, Galinier M, Trouillet C, Berry M, Delmas C, Turkieh A, Massabuau P, Taegtmeyer H, Smih F, Rouet P: Metabonomics analysis of plasma reveals the lactate to cholesterol ratio as an independent prognostic factor of short-term mortality in acute heart failure. PLoS One 2013, 8(4):e60737.
  • [18]Guan M, Xie L, Diao C, Wang N, Hu W, Zheng Y, Jin L, Yan Z, Gao H: Systemic perturbations of key metabolites in diabetic rats during the evolution of diabetes studied by urine metabonomics. PLoS One 2013, 8(4):e60409.
  • [19]Morin PJ, Ferguson D, Leblanc LM, Hébert MJ, Paré AF, Jean-François J, Surette ME, Touaibia M, Cuperlovic-Culf M: NMR metabolomics analysis of the effects of 5-lipoxygenase inhibitors on metabolism in glioblastomas. J Proteome Res 2013. Epub ahead of print
  • [20]Kobayashi T, Nishiumi S, Ikeda A, Yoshie T, Sakai A, Matsubara A, Izumi Y, Tsumura H, Tsuda M, Nishisaki H, Hayashi N, Kawano S, Fujiwara Y, Minami H, Takenawa T, Azuma T, Yoshida M: A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2013, 22(4):571-579.
  • [21]Sakai A, Nishiumi S, Shiomi Y, Kobayashi T, Izumi Y, Kutsumi H, Hayakumo T, Azuma T, Yoshida M: Metabolomic analysis to discover candidate therapeutic agents against acute pancreatitis. Arch Biochem Biophys 2012, 522(2):107-120.
  • [22]Gong HL, Tang WF, Yu Q, Xiang J, Xia Q, Chen GY, Huang X, Liang MZ: Effect of severe acute pancreatitis on pharmacokinetics of Da-Cheng-Qi Decoction components. World J Gastroenterol 2009, 15(47):5992-5999.
  • [23]Working Party of the British Society of Gastroenterology: UK guidelines for the management of acute pancreatitis. Gut 2005, 54(supplement 3):iii1-iii9.
  • [24]He G, Jiang Y, Zhang B, Wu G: The effect of HIF-1α on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac J Clin Nutr 2014, 23(1):174-180.
  • [25]Bartrons R, Caro J: Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 2007, 39:223-229.
  • [26]Singh A, Chen M, Li T, Yang XL, Li JZ, Gong JP: Parenteral nutrition combined with enteral nutrition for severe acute pancreatitis. ISRN Gastroenterol 2012, 2012:791383.
  • [27]Lusczek ER, Paulo JA, Saltzman JR, Kadiyala V, Banks PA, Beilman G, Conwell DL: Urinary 1H-NMR metabolomics can distinguish pancreatitis patients from healthy controls. JOP 2013, 14(2):161-170.
  • [28]Zhang AQ, Mitchell SC, Smith RL: Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 1999, 37:515-520.
  • [29]Wang Y, Bollard ME, Nicholson JK, Holmes E: Exploration of the direct metabolic effects of mercury II chloride on the kidney of Sprague–Dawley rats using high-resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition. J Pharm Biomed Anal 2006, 40(2):375-381.
  • [30]Oren A: Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 1990, 58(4):291-298.
  • [31]Stenberg E, Ringø E, Strøm AR: Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na + −stimulated anaerobic transport in cells and membrane vesicles. Appl Environ Microbiol 1984, 47(5):1090-1095.
  • [32]Ouyang D: Metabolomic characterization of human pancreatitis by 1H-NMR spectroscopy. Hepatogastroenterology 2012, 59(119):2314-2317.
  • [33]Diaz SO, Pinto J, Graça G, Duarte IF, Barros AS, Galhano E, Pita C, Almeida Mdo C, Goodfellow BJ, Carreira IM, Gil AM: Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J Proteome Res 2011, 10(8):3732-3742.
  • [34]Maléth J, Rakonczay Z Jr, Venglovecz V, Dolman NJ, Hegyi P: Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 2013, 207(2):226-235.
  • [35]Hac-Wydro K1, Wydro P: The influence of fatty acids on model cholesterol/phospholipid membranes. Chem Phys Lipids 2007, 150(1):66-81.
  文献评价指标  
  下载次数:37次 浏览次数:23次